
National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 1

Programming
With

National 4 Computing Science
Materials produced at GHS

By Mr S. whyte

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 2

 The Software Development Process
 Introduction

 Analysis

 Design

 Implementation

 Testing

 Documentation

 Evaluation

 Maintenance

The Software Development Process (SDP) can be split into 7 main steps which are carried out in order.
These steps should be carried out when creating any software project and are summarised below.

A statement about what your program is going to do. You will also include a description of the main
steps of the problem.

This involves designing both the user interface and the structure of the program code.

For the purpose of Intermediate 2 Computing, more emphasis will be placed on designing the structure of
the program code rather than the design of the user interface. We will be using a design notation known
as pseudocode to achieve this. More is mentioned about pseudocode on the next page.

The implementation stage involves keying in the program code using the built in text editor within the
programming environment. We will use LiveCode to create our programs.

Testing is an important part of any project. Testing ensures that your program is reliable and robust in
the sense that it should produce the correct results and not crash due to unexpected input.

We should test our program with three sets of test data. These are:
• Normal (accepted data within a set range)
• Extreme (accepted data on the boundaries)
• Exceptional (data that is not accepted).

An evaluation is usually a review which shows that your program is fit for purpose, in other words, it
does exactly what it was designed to do.

The evaluation should also focus on the readability of your program code. For example, if another
programmer was asked to maintain your program code at a later date, would they be able to understand
what was going on? You should always ensure your program is readable by doing the following:

• Use of meaningful identifiers for variable and array names
• Use of internal commentary (// This subroutine will do the following....)
• Effective use of white space between subroutines to space out the program.
• Indentation to show the start and end of any control structures such as a fixed loop.

Documentation is usually produced in the form of a user guide and a technical guide. The user guide
shows the user how to use the functions and features of the software whereas the technical guide
gives the user information on how to install the software as well as the minimum system requirements.

A

Dance

In

The

Dark

Every

Monday
Maintenance is performed at the very end of the project. You will not be required to perform any
maintenance on your programs but you will need to know about Corrective, Adaptive and Perfective
maintenance. These are covered in the Software Development theory notes.

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 3

 The Design Process
 Pseudocode

The design of a program is very important as it allows the programmer to
think about the structure of the program before they begin to create it.

The most common way to design the logic of a program is to use a text-
based notation known as Pseudocode. Pseudocode is a cross between
a programming language and our own English language. It makes a
program easier to understand without relying on the use of a programs
complex commands and syntax.

The design is built up of two parts, the first is the Stepwise Design. This shows the main
steps of the program. The second part is the Stepwise Refinement. This involves breaking
these main steps into even smaller steps so eventually, one line of pseudocode becomes
one line of program code. The design language used for the refinements is called HAGGIS
and is a requirement of the SQA.

Here is the program pseudocode for the first program you will create. The program will take in
a message and display that message on the screen in a loop five times. Study the
pseudocode very closely to understand what is going on:

Stepwise Design (the main steps of the program):
1.! Setup Variables
2.! Get Message
3.! Display Message Five Times

Stepwise Refinement (breaking down the main steps into smaller steps):
1. Setup Variables
1.1! SET My_Message TO String “”

2. Get Message
2.1! RECEIVE My_Message FROM (String) KEYBOARD

3. Display Message Five Times
3.1! REPEAT with loop = 1 to 5
3.2! SEND My_Message TO DISPLAY
3.3! END REPEAT

Stepwise Refinement:
The main steps are broken down
further (refined). We use 3.1, 3.2,
3.3, etc.

Notice that the pseudocode looks
more like our own language rather
than that of the programs.

HAGGIS Design
Language

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 4

 LiveCode
LiveCode is a modern programming environment that has been created by an
Edinburgh-based company called Runtime Revolution, www.runrev.com.

LiveCode is advertised as being a very high level language and is considered to be
even closer to the way we speak and write as opposed to the sometimes complex
commands and syntax used in other high-level programming environments.

Users can use LiveCode to create any type of program. This could range from a
simple application which performs addition to a more advanced game application that
could be run on a desktop computer or mobile phone.

LiveCode is an event-driven programming language which means that it involves
the triggering of events such as a mouse click on a button or text entry into an Output
field.

The LiveCode programming environment very portable which means that it can run on
a variety of operating system platforms. This includes a PC running Windows XP,
Vista, Windows 7 and 8 or Linux as well as on a Mac running OS X.

At least 400MB of hard disk space and 256MB of RAM is required in order for the
programming language to run.

The LiveCode programming environment has already been installed in the
Applications folder (mac) or Program Files (Windows PC).

You will need to copy the LiveCode Programming Tasks from the National 4
LiveCode Programming area of Glow to your own programming folder within your
user folder. This folder contains the National 4 LiveCode stacks for all 8 tasks that you
will do during this programming unit.

N4 > Software Design & Development > N4 LiveCode Programming

IMPORTANT

http://www.runrev.com
http://www.runrev.com

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 5

 Getting Started
 Task 1: Display My Message (Your First Program!)

Specification

A simple program is required to ask for and display a simple
message in an Output box.

The user will be prompted for their message and it will be
displayed five times.

In order to display the message five times, a simple
REPEAT...END REPEAT loop will need to be added.

A programmer always begins by writing out an analysis of the problem. This is when
they come up with the steps which need to be carried out by the program in order to
solve the problem.

Here is the analysis for the Display My Message Program:

I have been asked to create a simple program which asks for a message and then
displays the message on the screen 5 times. I will carry out the following three steps:

Step 1: I will setup the required variable.
Step 2: I will prompt the user for the message they require.
Step 3: The users message will be displayed in an Output box five times using a repeat...until loop

Analysis

Design

After the analysis comes the design of the program. The design goes into more
detail with regards to the main steps of the program.

The design of a program is also known as the Pseudocode (pronounced sue-do-
code). Pseudocode is a cross between our language and programming language
and helps the programmer think about the program to be created in a step-by-step
manner.

Here is the design showing steps for the Display My Message Program:

Stepwise Design (the main steps of the program):
1.! Setup Variables
2.! Get Message
3.! Display Message Five Times

Stepwise Refinement (breaking down the main steps into smaller steps):
1. Setup Variables
1.1! SET My_Message TO String “”

2. Get Message
2.1! RECEIVE My_Message FROM (String) KEYBOARD

3. Display Message Five Times
3.1! REPEAT with loop = 1 to 5
3.2! SEND My_Message TO DISPLAY
3.3! END REPEAT

HAGGIS Design
Language

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 6

 Getting Started
 Task 1: Display My Message (Your FIRST EVER Program!)

Open the “Display My Message” program stack. It can be found in:

N4 LiveCode Programming > 1_Display My Message.livecode

Once the program has been opened, select the “Edit Mode”
to edit the script for the “Display My Message” button.

Implementation

Select the “Display My Message” button to edit the object’s
script.

Select the “Code” button at the top left of the toolbar.

You will now enter the lines of program code on the next page
very carefully.

The implementation involves going onto the computer and actually creating the program
using the analysis and design sections to help.

For the purpose of these exercises, the program code will be supplied for you.
However, you will need to create the program code from scratch when you come onto
doing your SQA coursework.

Edit ModeRun Mode

Follow these simple instructions below in order to a produce the script for the “Display
My Message” button.

Your program script will
be placed into this button

Your message will be
displayed 5 times in this
field labelled “Output”

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 7

 Task 1: Display My Message (Your FIRST EVER Program!)

// Setup the variable to be used in this event
Global My_Message

On mouseUp
 // A list of the steps that will occur when the button has been pressed
 Setup_Variables
 Get_Message
 Display_Message_Five_Times
End mouseUp

On Setup_Variables
 // Setup the variable as a string data type
 Put “” into My_Message
End Setup_Variables

On Get_Message
 // Ask the user for the simple message they wish to be displayed
 Ask "Please print your simple message, i.e. Hello World"
 Put it into My_Message
End Get_Message

On Display_Message_Five_Times
 // Display users message on the screen 5 times using a loop
 REPEAT with loop = 1 to 5
 Put My_Message & Return after field "Output"
 END REPEAT
End Display_Message_Five_Times

Implementation (continued)

When you edit the “Display My Message” button, you see the area where the program script is to be
created. The script consists of lines of program code that will be executed when the button is pressed
using the mouse.

Your task is to add the program code shown below carefully. Watch your spelling as all your code will
need to be correct in order for your program to run successfully!

Testing

Test that your program produces the correct Output by running it. If the program works correctly, it will
display the message you keyed in five times.

To run a LiveCode program, go to the File menu and save and close the script and exit edit mode by
selecting the following button:

Save your program as 1_Display My Message.livecode

Select the “Display My Message” button and a pop-up
window will appear. From there, key in the message you
would like displayed.

This message should appear five times in the Output field
as shown on the right.

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 8

Specification

A program is required to take in the title, location, time and date of a party
and display these details in the form of a party invitation on the screen.

The graphical user interface for the program has already been created for
you. All you need to do is to key in the program for the button “Create
Invitation”.

Before starting, familiarise yourself with both the analysis and design below.

 Task 2: Party Invitation Program

Analysis

I have been asked to create a program which will get the the title, location, time and
date of a party and display these details in an Output box in the form of a party
invitation. I will complete this task by carrying out the following three steps:

Step 1: Setup the variables required to store the party details.

Step 2: Display a message asking for the user to enter the title of their party. Once the
user has entered this, I will then display a message asking for party location and these
details will be entered. I will then ask the user a further two questions, these questions will ask for the
time and date of the party. I will expect the user to key in these details also.

Step 3: All details entered will then be displayed in the form of an invitation in a field called “Output”

Design

Here is the design showing the steps for the Party Invitation Program:

Stepwise Design (the main steps of the program):
1.! Setup Variables
2.! Get Invitation Details
3.! Display Invitation Details

Stepwise Refinement (breaking down the main steps into smaller steps):
1. Setup Variables
1.1! SET Invitation_Title TO String “”
1.2! SET Invitation_Location TO String “”
1.3! SET Invitation_Time TO String “”
1.4! SET Invitation_Date TO String “”

2. Get Invitation Details
2.1! RECEIVE Invitation_Title FROM (String) KEYBOARD
2.2! RECEIVE Invitation_Location FROM (String) KEYBOARD
2.3! RECEIVE Invitation_Time FROM (String) KEYBOARD
2.4! RECEIVE invitation_Date FROM (String) KEYBOARD

3. Display Invitation Details
3.1! SEND [“You’re invited to ”] & Invitation_Title TO DISPLAY
3.2! SEND [“The location is ”] & Invitation_Location TO DISPLAY
3.3! SEND [“The time is ”] & Invitation_Time TO DISPLAY
3.4! SEND [“The date is ”] & Invitation_Date TO DISPLAY
3.5! SEND [“Don’t be late!!”] TO DISPLAY
3.6! SEND a blank line TO DISPLAY

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 9

 Task 2: Party Invitation Program

Open the “Party Invitation” stack. It can be found in:

N4 LiveCode Programming > 2_Party Invitation.livecode

Your teacher will go over this program with you before you begin. Make sure you listen
carefully and work out what the code on the next page is causing the program to do.

As you progress through the tasks, they will start to get a little harder. If you run into
difficulties, for example, your program does not run, the line the error is on will be
highlighted for you. Try to work out for yourself what the problem could be before
calling on the help of the teacher.

Implementation

Please Read!

Your
program will
go into the

script of this
button

Your invitation will be displayed in
this field labelled “Output”

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 10

// Setup the variables to be used in this event.
Global Party_Title, Party_Location, Party_Time, Party_Date

On mouseUp
 // A list of the steps that will occur when the button has been pressed.
 Setup_Variables
 Get_Invitation_Details
 Display_Invitation_Details
End mouseUp

On Setup_Variables
 // Setup the variables as string data types.
 Put “” into Party_Title
 Put “” into Party_Location
 Put “” into Party_Time
 Put “” into Party_Date
End Setup_Variables

On Get_Invitation_Details
 // Get the party invitation details from the user.
 Ask "Please enter the title of your party, for example, Easter Chicks Party"
 Put it into Party_Title
 Ask "Please enter the location of your party, for example, Electric Circus, Edinburgh"
 Put it into Party_Location
 Ask "Please enter the time of your party, for example, 8pm until 1am"
 Put it into Party_Time
 Ask "Please enter the date of your party, for example, 8th April 2010"
 Put it into Party_Date
End Get_Invitation_Details

On Display_Invitation_Details
 // Display the details of the party invitation in the Output field.
 Put "You're invited to " & Party_Title & Return after field "Output"
 Put "The location is " & Party_Location & Return after field "Output"
 Put "The time is " & Party_Time & Return after field "Output"
 Put "The date is " & Party_Date & Return after field "Output"
 Put "Don't be late!!" & Return after field "Output"
 Put Return after field "Output"
End Display_Invitation_Details

Click on the “Edit Mode” tool to edit the script for the Invitation
program.

Select the “Create Invitation” button to edit the
object script using the button on the top
toolbar.

 Task 2: Party Invitation Program

Implementation (continued)

Your task is to add the program code shown below carefully. Watch your spelling as all
your code will need to be correct in order for your program to run successfully!

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 11

Once your program is complete, check that it works correctly by clicking
on the ‘Apply’ button.

Fix any errors in your program. The lines that contain
errors will be picked up by the translator for you to fix.

When you have no errors, you are ready to test that
your application program works correctly by running it.

Click on the “Run Tool” to run your application program. Click on
the ‘Create Invitation’ button and key in any data you wish. Your
program should show similar Output to the screenshot below.

 Task 2: Party Invitation Extension - 4 party Tickets using a loop

Save your program as 2_Party Invitation.livecode

Testing

 Task 2: Party Invitation Program

Go back into the script of the “Create Invitation” button and
enter the three new lines shown below. This will setup a fixed
loop to produce the party ticket 4 times as well as print the
number of the party ticket (loop). Test that your program works
by ensuring that it produces four tickets with the ticket number.

REPEAT...

END REPEAT

Run Tool Edit Tool

On Display_Invitation_Details
 // Display the details of the party invitation in the Output field.
 REPEAT with loop = 1 to 4
 Put "This is ticket number: " & loop & Return after field "Output"
 Put "You're invited to " & Party_Title & Return after field "Output"
 Put "The location is " & Party_Location & Return after field "Output"
 Put "The time of this party is " & Party_Time & Return after field "Output"
 Put "The date of this party is " & Party_Date & Return after field "Output"
 Put "Don't be late!!" & Return after field "Output"
 Put Return after field "Output"
 END REPEAT
End Display_Invitation_Details

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 12

 What are Variables?

Let’s talk about variables as they are very important in
programming.

To put it simply, a variable is a “box” into which data can be
placed whilst a program is running. We give these boxes
names which suggest or give us a clue as to what data is
being held in the box.

PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE

Here are the variables that we used in the Party Invitation Program.

Variable names cannot contain any spaces and must not be a reserved command in
LiveCode. You can tell if a variable has been accepted as it will appear in black font
colour when typed into the script window as shown below:

In order for the program to know which data is a variable and which is text to be printed
in a put statement, the ampersand & is used. This separates both the variable and the
text to be put in an Output field as shown below:

Put "You’re invited to " & Party_Title & Return after field "Output"

Variable_Name

Data to be stored

Put "You’re invited to " & Party_Title & return after field "Output"

Put "The location is " & Party_Location & return after field "Output"

Put "The time of this party is " & Party_Time & return after field "Output"

Put "The date of this party is " & Party_Date & return after field "Output"

Party_Title Party_Time Party_Date

Steve’s 30th
Birthday Party

The Balmoral
Hotel

6pm until
1am

10th September
2014

Party_Location

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 13

 So, what have we learned so far?

The LiveCode program area has three areas:!
1.! The variable list - lists all variables used in the program
2.! The event - this is a list of all subroutines which are run
! in order when the button is clicked on by the user.
3.! The subroutines - contain the lines of code to be executed.

PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE

ASK is a command that allows the programmer to ask the user a question
or ask the user for a response. For example:

Ask "Please enter the title of your party, for example, Easter Chicks
Party"
PUT is a command that allows the programmer to transfer the users
response (it) into a meaningful variable. For example:

Put it into Invitation_Title

// are used to put internal commentary into a program or to space out
different parts of the program to make it easier to read. For example:

// Print out the details of the party ticket

On and End are used to begin and end a subroutine within an event.
For example:

On Display_Invitation_Details
 Put "You're invited to " & Party_Title & Return after field "Output"
 Put "The location is " & Party_Location & Return after field "Output"
 Put "The time is " & Party_Time & Return after field "Output"
 Put "The date is " & Party_Date & Return after field "Output"
 Put "Don't be late!!" & Return after field "Output"
 Put Return after field "Output"
End Display_Invitation_Details

LOOP
We know that one way to get one or more lines of code to repeat is a
loop.

A Repeat/End Repeat loop can be used to repeat as many times as we
wish.

REPEAT with loop = 1 to 4
 Put "Hello!" & Return after field "Output"
END REPEAT

Well Done! You are now a computer programmer!

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 14

 Task 3: Address Labels Program
Specification

A program is required in order to produce 5 address labels. The
details to be entered and displayed in a label are the contact name,
address, post code, city and phone number.

Analysis

I will do this task by dividing it up into three steps:
Step 1:! I will setup the variables to be used in this program.
Step 2:! I will display a message on the screen prompting for the user to enter the name. Once
the user has entered this, I will then display a series of other messages asking the user for their
address, post code, city and phone number. I will expect the user to key in these details also.
Step 3:! All details entered will then be displayed 5 times using a loop in a field called “Output”.

Design

Here is the design showing the steps for the Address Labels Program:

Stepwise Design (the main steps of the program):
1.! Setup Variables
2.! Get Contact Details
3.! Display Contact Details

Stepwise Refinement (breaking down the main steps into smaller steps):
1. Setup Variables
1.1! SET Contact_Name TO String “”
1.2! SET Contact_Address TO String “”
1.3! SET Contact_Post_Code TO String “”
1.4! SET Contact_City TO String “”
1.5! SET Contact_Phone TO String “”

2. Get Contact Details
2.1! RECEIVE Contact_Name FROM (String) KEYBOARD
2.2! RECEIVE Contact_Address FROM (String) KEYBOARD
2.3! RECEIVE Contact_Post_Code FROM (String) KEYBOARD
2.4! RECEIVE Contact_City FROM (String) KEYBOARD
2.5! RECEIVE Contact_Phone FROM (String) KEYBOARD

3. Display Contact Details
3.1! REPEAT with loop = 1 TO 5
3.2! SEND [“Name: ”] & Contact_Name TO DISPLAY
2.3! SEND [“Address: ”] & Contact_Address TO DISPLAY
2.4! SEND [“Post Code: ”] & Contact_Post_Code TO DISPLAY
2.5! SEND [“City: ”] & Contact_City TO DISPLAY
2.6! SEND [“Telephone Number: ”] & Contact_Phone TO DISPLAY
3.7! END REPEAT

1

This is address label: 1
Name: Steve Whyte
Address: 12 High Street
Post Code: EH4 7FL
City: Edinburgh
Telephone Number: 01316656545

2 3 4 5

HAGGIS Design
Language

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 15

 Task 3: Address Labels Program

Use the analysis and the design on the previous page to help you complete this task.
You will also find the code from Task 2 helpful as both of these programs are very
similar.

Open the “Address Labels” stack. It can be found in:

N4 LiveCode Programming > 3_Address Labels.livecode

Like the previous task, double click on the “Create Address Label” button and enter the
script for this button.

Test that your program works correctly by producing 5 address labels in the Output field.

Save your program as 3_Address Labels.livecode

Implementation

Testing

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 16

 Task 4: Apple Store

Specification

A program is required to ask for an employee name and work out the
amount of money that person gets over the course of a week depending
on their hourly wage and amount of hours worked.

The program should ask for the amount of hours worked over the week
and then the hourly rate. It should then calculate the amount that they get
a week and then display this information on the screen along with a suitable message.

Analysis

I have been asked to create a program to get an employees name and then work out
the amount of money they get over the course of a week depending on their hourly
wage and amount of hours worked. I will complete this task in four steps:

Step 1:!Setup the variables to be used in this program
Step 2:!Prompt the user for the employees name. Once the user has entered this, I will
then display another message asking for the number of hours they have worked. I will
then ask the user for their hourly rate. Each answer will be placed into a different
variable.
Step 3:!In order to calculate the total pay, I will multiply the hours variable by the rate and place this into
the variable total_pay.
Step 4:!The final step will involve displaying the users name and the total amount they have earned that
week in a field called “Output”

Design

Here is the design showing the steps for the Apple Store Program:

Stepwise Design (the main steps of the program):
1.! Setup Variables
2.! Get Data
3.! Calculate Total Pay
4.! Display Total Pay

Stepwise Refinement (breaking down the main steps into smaller steps):
1. Setup Variables
1.1! SET Name_of_Person TO String “”
1.2! SET Hours TO Real 0.00
1.3! SET Rate TO Real 0.00
1.4! SET Total_Pay TO Real 0.00

2. Get Data
2.1! RECEIVE Name_of_Person FROM (String) KEYBOARD
2.2! RECEIVE Hours FROM (Real) KEYBOARD
2.3! RECEIVE Rate FROM (Real) KEYBOARD

3. Calculate Total Pay
3.1! SET Total_Pay TO Hours * Rate

4. Display Total Pay
4.1! SEND [“Well ”] & Name_of_Person TO DISPLAY
4.2! SEND [“This week you have earned ”] & Total_Pay TO DISPLAY

HAGGIS Design
Language

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 17

 Task 4: Apple Store

Open the “Apple Store” stack. It can be found in:

N4 LiveCode Programming > 4_Apple Store.livecode

Implementation

Implementation (continued)

Assign the following code to the “Calculate Total Pay”
button:

// Setup the global variables to be used in this event.
Global Name_of_Person, Hours, Rate, Total_Pay

On mouseUp
 Setup_Variables
 Get_Data
 Calculate_Total_Pay
 Display_Total_Pay
End mouseUp

On Setup_Variables
 // Setup the variables with their different data types.
 Put “” into Name_of_Person
 Put 0.00 into Hours
 Put 0.00 into Rate
 Put 0.00 into Total_Pay
End Setup_Variables

On Get_Data
 // Get the users name, amount of hours worked that week and the users hourly rate.
 Ask "Please enter your name, e.g. Steve Jobs: "
 Put it into Name_of_Person
 Ask "Please enter the number of hours you have worked in the Apple Store this week: "
 Put it into Hours
 Ask "Please enter your hourly rate, e.g. 10.50 (no pound signs please!): "
 Put it into Rate
End Get_Data

On Calculate_Total_Pay
 // Multiply the hours by the rate. The answer will be placed in to total_pay.
 Put Hours * Rate into Total_Pay
End Calculate_Total_Pay

On Display_Total_Pay
 // Display the users name and total pay in the field "Output".
 Put "Well " & Name_of_Person & ":" & Return after field "Output"
 Put "This week you have earned: £" & Total_Pay & Return after field "Output"
End Display_Total_Pay

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 18

 Task 4: Apple Store

Save your program as 4_Apple Store.livecode

Testing

Testing is a very important part of any programming project. A program would not sell
and would be useless if it did not produce the correct Output when it was run.

Your Apple Store program is simple but must be tested to ensure that it produces the
correct results.

It is advisable that you check your calculations using a calculator first. You should then
run your program to check that you get the same results. This is a good indication that
your program is indeed working correctly.

You should now run your program three times with data below. Enter the sample data
for name, hours worked and hourly rate below and check that the results for “Total Pay”
are the same as the results produced in your program.

Name Hours
Worked

Hourly
Rate

Calculated Total
Pay Programs Total Pay

Susan
Wright 12 £8.00 £96.00 £96.00

Kevin
Robertson 30 £10.00 £300.00 £300.00

Allan Drain 39 £20.00 £780.00 £780.00

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 19

 Task 5: Edinburgh Bowling Club

Specification

An Edinburgh Bowling Club would like a
simple program to work out if their
members qualify for a special bowling
tournament that takes place on an
annual basis.

The program should take in the players
name and the scores the player
obtained in four games.

If the average score of their four games is greater or equal to the qualifying score
which is set at 100, then they qualify to compete in the bowling tournament.

If their average score is less than 100, then they are asked to train harder and try
again for the competition next year.

Analysis

The first step is to setup the variables used in the program.

The second step is to prompt the user for their name and take in the
scores from each of their four games.

The third step is to calculate the average score of the four games by
adding up the scores from each game and dividing by four.

The fourth and final step involves making a decision as to whether the player qualifies
for the bowling tournament by using an IF statement to compare the players average
score with the qualifying score and displaying a suitable message.

The Design for the above program is on the next page

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 20

 Task 5: Edinburgh Bowling Club

Design

Here is the design showing the steps for the Edinburgh Bowling Club:

Stepwise Design (the main steps of the program):
1.! Setup Variables
2.! Get Player Data
3.! Calculate Average Score
4.! Decide If Qualified

Stepwise Refinement (breaking down the main steps into smaller steps):
1. Setup Variables
1.1! SET Players_Name TO String “”
1.2! SET Game1 TO Integer 0
1.3! SET Game2 TO Integer 0
1.4! SET Game3 TO Integer 0
1.5! SET Game4 TO Integer 0
1.6! SET Average_Score TO Real 0.00
1.7! SET Qualifying_Score TO Integer 100

2. Get Player Data
2.1! RECEIVE players_name FROM (String) KEYBOARD
2.2! RECEIVE Game1 FROM (Integer) KEYBOARD
2.3! RECEIVE Game2 FROM (Integer) KEYBOARD
2.4! RECEIVE Game3 FROM (Integer) KEYBOARD
2.5! RECEIVE Game4 FROM (Integer) KEYBOARD

3. Calculate Average Score
3.1! SET Average_Score TO (Game1 + Game2 + Game3 + Game4) / 4 !

4. Decide If Qualified
4.1! SEND [“Here is the decision for player named ”] & Players_Name TO DISPLAY

4.2! IF Average_Score >= Qualifying_Score THEN
4.3! SEND [“You’ve qualified as your average score was ”] & Average_Score TO DISPLAY
4.4! ELSE
4.5! SEND [“You have not qualified as your average was ”] & Average_Score TO DISPLAY
4.6! END IF

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 21

 Task 5: Edinburgh Bowling Club

Open the “Edinburgh Bowling Club” stack. It can be found
in:

N4 LiveCode Programming > 5_Edinburgh Bowling Club.livecode

Implementation

Implementation

Assign the following code to the “Enter Scores” button:

// Setup the global variables to be used in this event.
Global Players_Name, Game1, Game2, Game3, Game4, Average_Score, Qualifying_Score

On mouseUp
 Setup_Variables

 Get_Player_Data
 Calculate_Average_Score
 Decide_If_Qualified
End mouseUp

On Setup_Variables
 // Setup the variables with their different data types.
 Put “” into Players_Name
 Put 0 into Game1
 Put 0 into Game2
 Put 0 into Game3
 Put 0 into Game4
 Put 0.00 into Average_Score
 Put 100 into Qualifying_Score
End Setup_Variables

On Get_Player_Data
 // Get the players name and scores for each of their four games.
 Ask "Please enter the players name"
 Put it into Players_Name
 Ask "Please enter score for game 1"
 Put it into Game1
 Ask "Please enter score for game 2"
 Put it into Game2
 Ask "Please enter score for game 3"
 Put it into Game3
 Ask "Please enter score for game 4"
 Put it into Game4
End Get_Player_Data

On Calculate_Average_Score
 // Find the average of the four game by adding all them up and then dividing the total by 4.
 Put (Game1 + Game2 + Game3 + Game4) /4 into Average_Score
End Calculate_Average_Score

On Decide_If_Qualified
 // Display a message with the players name.
 Put "Here is the decision for player named " & Players_Name & Return after field "Output"
 // Use an IF statement to determine if the player qualifies for the bowling tournament.
 IF Average_Score >= Qualifying_Score THEN
 Put "You’ve qualified as your average was " & Average_Score & ". Well done!" after field "Output"
 ELSE
 Put "You’ve not qualified as your average was " & Average_Score & ". Try harder!" after field "Output"
 END IF
End Decide_If_Qualified

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 22

 Task 5: Edinburgh Bowling Club

Names Points From
Four Games

Calculated
Average

Expected
Decision

Program
Average

Program
Decision

Allan Drain
90

120
101
99

102.5 Ready for
Tournament 102.5 Ready for

Tournament

Steven Whyte
50
80
89
92

77.75
Not Ready

for
Tournament

77.75
Not Ready

for
Tournament

Shona Valentine
120
127
123
115

121.25 Ready for
Tournament 121.25 Ready for

Tournament

Louise Taylor
55
75
68
63

65.25
Not Ready

for
Tournament

65.25
Not Ready

for
Tournament

You should now test your program with the following sets of test data in the table below.

Remember - when it comes to your coursework, you will be expected to work out the answers using a
calculator first and then run your program to ensure you get the same answer.

Testing

Save your program as 5_Edinburgh Bowling Club.livecode

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 23

 Task 6: Paintball Games

Specification

A company requires a program to calculate the total cost
of its paintball games and work out if a customer gets a
free games based on the games that it plays.

The cost of each game ranges from £10 to £30
depending on how big the group is and IF the total cost
of the four games is over £50, the customer is entitled to
play in another game of their choice for free.

There are four paintball games that customers can take part in. These are the:

• Steal the Flag Game
• Team Versus Team Game
• Capture the Base Game
• Strikeout Game

Analysis

The first step is to setup the variables used in the program.

The second step is to prompt the user for the price of the four games of
paintball. Prices range from £10 to £30.

The third step is to calculate the total cost of all four games using the
prices entered.

The fourth and final step involves making a decision as to whether the player is entitled
to a free game of paintball using an IF statement to decide if the player has spent over
£50.

The Design for the above program is on the next page

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 24

 Task 6: Paintball Games

Design

Here is the design showing the steps for the Edinburgh Bowling Club:

Stepwise Design (the main steps of the program):
1.! Setup Variables
2.! Get Game Prices
3.! Calculate Total
4.! Decide

Stepwise Refinement (breaking down the main steps into smaller steps):
1.! Setup Variables
1.1! SET Steal_Flag_Game TO Real 0.00
1.2! SET Team_Game TO Real 0.00
1.3! SET Capture_Base_Game TO Real 0.00
1.4! SET Strikeout_Game TO Real 0.00
1.5! SET Total TO Real 0.00

2.! Get Game Prices
2.1! RECEIVE Steal_Flag_Game FROM (Real) KEYBOARD
2.2! RECEIVE Team_Game FROM (Real) KEYBOARD
2.3! RECEIVE Capture_Base_Game FROM (Real) KEYBOARD
2.4! RECEIVE Strikeout_Game FROM (Real) KEYBOARD

3.! Calculate Total
3.1! SET Total TO Steal_Flag_Game + Team_Game + Capture_Base_Game +
! Strikeout_Game

4.! Decide
4.1! SEND [“The total cost of all paintball games is £”] & Total TO DISPLAY
4.2! IF Total > 50 THEN
4.3! SEND [“You are entitled to an extra paintball game for free!”] TO DISPLAY
4.4! END IF

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 25

 Task 6: Paintball Games

Open the “Paintball Games” stack. It can be found in:

N4 LiveCode Programming > 6_Paintball Games.livecode

Implementation

Implementation

Assign the following code to the “Get Prices” button:

// Setup the global variables to be used in this event.
Global Steal_Flag_Game, Team_Game, Capture_Base_Game, Strikeout_Game, Total

On mouseUp
 Setup_Variables
 Get_Game_Prices
 Calculate_Total
 Decide
End mouseUp

On Setup_Variables
 // Setup the variables as real data types.
 Put 0.00 into Steal_Flag_Game
 Put 0.00 into Team_Game
 Put 0.00 into Capture_Base_Game
 Put 0.00 into Strikeout_Game
 Put 0.00 into Total
End Setup_Variables

On Get_Game_Prices
 // Ask the user for the cost of their four different games.
 Ask "Please enter the cost of the Capture The Flag Game: "
 Put it into Steal_Flag_Game
 Ask "Please enter the cost of the Team Versus Team Game: "
 Put it into Team_Game
 Ask "Please enter the cost of the Capture The Base Game: "
 Put it into Capture_Base_Game
 Ask "Please enter the cost of the Strikeout Game: "
 Put it into Strikeout_Game
End Get_Game_Prices

On Calculate_Total
 // Calculate the overall total of each game by adding up the cost of each game.
 Put Steal_Flag_Game + Team_Game + Capture_Base_Game + Strikeout_Game into Total
End Calculate_Total

On Decide
 // Make a decision as to whether the user qualifies for a free game based on the
 // total cost of all games. The total must be over £50 in order to qualify.
 Put "The total cost of all paintball games is £" & Total into line 1 of field "Output"
 IF Total > 50 THEN
 Put "You are entitled to an extra paintball game for free!" into line 2 of field "Output"
 END IF
End Decide

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 26

 Task 6: Paintball Games

Price of Four
Games

Calculated
Total

Expected
Decision

Program
Average

Program
Decision

£20
£30
£20
£20

£90 Extra Game for
Free £90 Extra Game for

Free

£10
£10
£10
£15

£45 No Extra Game
for Free £45 No Extra Game

for Free

£20
£5

£10
£20

£55 Extra Game for
Free £55 Extra Game for

Free

£20
£20
£5
£5

£50 No Extra Game
for Free £50 No Extra Game

for Free

You should now test your program with the following sets of test data in the table below.

Remember - when it comes to your coursework, you will be expected to work out the answers using a
calculator first and then run your program to ensure you get the same answer.

Testing

Save your program as 6_Paintball Games.livecode

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 27

 Task 7: Count My Calories

Specification

A program is required to work out
someones average calorie intake over a
four week period in order if they are on
track to lose weight for Weight Watchers.

The program will take in the users weekly
calorie intake over four weeks then will
calculate and display the average calorie
intake over the course of the month.

Analysis

The first step is to setup the variables used in the program.

The second step is to prompt the user for their weekly calorie intake
over the course of a month using a REPEAT WITH loop and take in the
calories from each of the four weeks and adding this to the total calories
variable.

The third and final step involves displaying the average number of
calories over the four weeks by dividing the total number of calories by the number of
weeks (size of the loop).

The Design for the above program is on the next page

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 28

 Task 7: Count My Calories

Design

Here is the design showing the steps for the Count My Calories:

Stepwise Design (the main steps of the program):
1.! Setup Variables
2.! Get Calories
3.! Display Average

Stepwise Refinement (breaking down the main steps into smaller steps):
1.! Setup Variables
1.1! SET Calories TO Real 0.00
1.2! SET Number_of_Weeks TO Integer 4
1.3! SET Total_Calories TO Real 0.00
1.4! SET Four_Week_Average TO Real 0.00

2.! Get Calories
2.1! REPEAT with loop = 1 to Number_of_Weeks
2.2! RECEIVE Calories FROM (Real) KEYBOARD
2.3! SET Total_Calories TO Calories + Total_Calories
2.4! END REPEAT

3.! Display Average
3.1! SET Four_Week_Average TO Total_Calories / Number_of_Weeks
3.2! SEND [“The average number of calories burned over the 4 week period was: ”]
! & Four_Week_Average TO DISPLAY

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 29

 Task 7: Count My Calories

Open the “Count My Calories” stack. It can be found in:

N4 LiveCode Programming > 7_Count My Calories.livecode

Implementation

Implementation

Assign the following code to the “Get Calories” button:

// Setup the global variables to be used in this event.
Global Calories, Number_of_Weeks, Total_Calories, Four_Week_Average

On mouseUp
 Setup_Variables
 Get_Calories
 Calculate_and_Display_Four_Week_Average
End mouseUp

On Setup_Variables
 // Setup the variables with their different data types.
 Put 0.0 into Calories
 Put 4 into Number_of_Weeks
 Put 0 into Total_Calories
 Put 0 into Four_Week_Average
End Setup_Variables

On Get_Calories
 // Use a REPEAT loop in order to get the number of calories over the course of
 // the month.
 REPEAT with loop = 1 to Number_of_Weeks
 Ask "Please enter the number of calories burned during week number: " & loop
 Put it into Calories
 Put Calories + Total_Calories into Total_Calories
 END REPEAT
End Get_Calories

On Calculate_and_Display_Four_Week_Average
 // Work out the average and then display a suitable message with the users
 // average monthly calorie intake.
 Put Total_Calories / Number_Of_Weeks into Four_Week_Average
 Put "The average number of calories burned over the four week period was: " &
 Four_Week_Average into line 1 of field "Output" // On the same line
End Calculate_and_Display_Four_Week_Average

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 30

 Task 7: Count My Calories

Names Calories From Four
Games Calculated Average Program

Average

Richard
Stewart

14,027
13,050
13,434
12,900

13352.75 13352.75

Paul
Main

12,002
11,939
12,325
10,122

11597 11597

Shona
King

14,503
15,399
14,492
15,940

15083.5 15083.5

Carol
Gray

10,213
10,534
13,655
10,706

11277 11277

You should now test your program with the following sets of test data in the table below.

Remember - when it comes to your coursework, you will be expected to work out the answers using a
calculator first and then run your program to ensure you get the same answer.

Testing

Save your program as 7_Count My Calories.livecode

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 31

 Task 8: O2 Mobile Tariff Calculator

Specification

A program is required to take in a mobile phone
contract type. There are three contracts to choose
from:

• O2 50 Minutes
• O2 100 Minutes
• O2 200 Minutes

Each contract has a different price ranging from cheap to expensive per month. Here
are the prices:

Tariff 1: O2 50 Minutes for £11.00 per month
Tariff 2: O2 100 Minutes for £14.50 per month
Tariff 3: O2 200 Minutes for £18.00 per month

The program should ask the user to select a tariff and will then ask the user how many
months they would like to remain on that tariff. The program will then calculate the total
amount that the user will have to pay back over the course of that period.

Once calculated, the program will display the amount of months the user has chosen
and the total amount that they have to pay back.

Analysis
The first step is to setup the variables used in the program.

The second step is to prompt the user for their choice of contract that
they would like to buy using an IF statement.

The program will then ask the user for the time in months that they
would like to remain on the contract and will carry out a calculation
which multiplies the amount of money the contract is per month by the
amount of months they wish to take the contract out for.

The third and final step involves displaying the length of the contract in months and the
total cost the user will have to pay.

The Design for the above program is on the next page

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 32

 Task 8: O2 Mobile Tariff Calculator

Design

Here is the design showing the steps for the O2 Mobile Tariff
Program:

Stepwise Design (the main steps of the program):
1.! Setup Variables
2.! Get Tariff Choice
3.! Display Overall Cost

Stepwise Refinement (breaking down the main steps into smaller steps):
1.! Setup Variables
1.1! SET Number_of_Months TO Integer 0
1.2! SET O2_50 TO Real 11.00
1.3! SET O2_100 TO Real 14.50
1.4! SET O2_200 TO Real 18.00
1.5! SET choice TO Integer 0
1.6! SET Total_Cost TO Real 0.00

2.! Get Tariff Choice
2.1! RECEIVE Choice FROM (Integer) KEYBOARD
2.2! RECEIVE Number_of_Months FROM (Integer) KEYBOARD

2.3! IF choice = 1 THEN
2.4! SET Total_Cost TO O2_50 * Number_of_Months

2.5! IF Choice = 2 THEN
2.6! SET Total_Cost TO O2_100 * Number_of_Months

2.7! IF Choice = 3 THEN
2.8! SET Total_Cost TO O2_200 * Number_of_Months

3.! Display Overall Cost
3.1! SEND [“You want to remain on your chosen tariff for ” & Number_of_Months
! “The total amount comes to £”] & Total_Cost TO DISPLAY

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 33

 Task 8: O2 Mobile Tariff Calculator

Open the “Mobile Tariff Calculator” stack. It can be found in:

N4 LiveCode Programming > 8_O2 Mobile Tariff Calculator.livecode

Implementation

Implementation

Assign the following code to the “Get Tariffs” button:

// Setup the global variables to be used in this event.
Global Number_of_Months, O2_50, O2_100, O2_200, Choice, Total_Cost

On mouseUp
 Setup_Variables
 Get_Tariff_Choice
 Display_Overall_Cost
End mouseUp

On Setup_Variables
 // Setup the variables with the different data types.
 Put 0 into Number_of_Months
 Put 11.00 into O2_50
 Put 14.50 into O2_100
 Put 18.00 into O2_200
 Put 0 into Choice
 Put 0.00 into Total_Cost
End Setup_Variables

On Get_Tariff_Choice
 // Ask the user for their choice of tariff.
 Ask "Please choose the type of tariff you want. Enter 1 for O2 50, 2 for O2 100 and 3 for O2 200"
 Put it into Choice

 // Ask the user for the number of months they would like to remain on the tariff.
 Ask "Please enter the number of months that you want to remain on this tariff"
 Put it into Number_of_Months

 // If the first tariff is chosen, multiply the cost of the tariff by the number of months the user has
 // chosen and put the answer into the variable total_cost.
 IF Choice = 1 THEN
 Put O2_50 * Number_of_Months into Total_Cost
 END IF

 // If the the second tariff is chosen, multiply the cost of the tariff by the number of months the
 // user has chosen and put the answer into the variable total_cost.
 IF Choice = 2 THEN
 Put O2_100 * Number_of_Months into Total_Cost
 END IF

 // If the third tariff is chosen, multiply the cost of the tariff by the number of months the user has
 // chosen and put the answer into the variable total_cost.
 IF Choice = 3 THEN
 Put O2_200 * Number_of_Months into Total_Cost
 END IF
End Get_Tariff_Choice

On Display_Overall_Cost
 // Display the overall cost of the tariff over the chosen period of months.
 Put "You want to remain on your chosen tariff for " & Number_of_Months & " months. The total amount
 comes to £" & Total_Cost into line 1 of field "Output" // On the same line
End Display_Overall_Cost

National 4 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 34

 Task 8: O2 Mobile Tariff Calculator

Contract Name and
Cost Per Month

Chosen Number
of Months

Calculated
Total Cost

Program
Average

O2 50
£11.00 24 £264 £264

O2 100
£14.50 18 £261 £261

O2 200
£18.00 12 £216 £216

You should now test your program with the following sets of test data in the table below.

Remember - when it comes to your coursework, you will be expected to work out the answers using a
calculator first and then run your program to ensure you get the same answer.

Testing

Save your program as 8_O2 Mobile Tariff Calculator.livecode

