
National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 1

Programming
With

Materials produced at GHS
By Mr S. whyte

National 5 Computing Science

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 2

 The Software Development Process
 Introduction

 Analysis

 Design

 Implementation

 Testing

 Documentation

 Evaluation

 Maintenance

The Software Development Process (SDP) can be split into 7 main steps which are carried out in order.
These steps should be carried out when creating any software project and are summarised below.

A statement about what your program is going to do. You will also include a description of the main
steps of the problem.

This involves designing both the user interface and the structure of the program code.

For the purpose of Intermediate 2 Computing, more emphasis will be placed on designing the structure of
the program code rather than the design of the user interface. We will be using a design notation known
as pseudocode to achieve this. More is mentioned about pseudocode on the next page.

The implementation stage involves keying in the program code using the built in text editor within the
programming environment. We will use LiveCode to create our programs.

Testing is an important part of any project. Testing ensures that your program is reliable and robust in
the sense that it should produce the correct results and not crash due to unexpected input.

We should test our program with three sets of test data. These are:
• Normal (accepted data within a set range)
• Extreme (accepted data on the boundaries)
• Exceptional (data that is not accepted).

An evaluation is usually a review which shows that your program is fit for purpose, in other words, it
does exactly what it was designed to do.

The evaluation should also focus on the readability of your program code. For example, if another
programmer was asked to maintain your program code at a later date, would they be able to understand
what was going on? You should always ensure your program is readable by doing the following:

• Use of meaningful identifiers for variable and array names
• Use of internal commentary (// This subroutine will do the following....)
• Effective use of white space between subroutines to space out the program.
• Indentation to show the start and end of any control structures such as a fixed loop.

Documentation is usually produced in the form of a user guide and a technical guide. The user guide
shows the user how to use the functions and features of the software whereas the technical guide
gives the user information on how to install the software as well as the minimum system requirements.

A

Dance

In

The

Dark

Every

Monday
Maintenance is performed at the very end of the project. You will not be required to perform any
maintenance on your programs but you will need to know about Corrective, Adaptive and Perfective
maintenance. These are covered in the Software Development theory notes.

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 3

 The Design Process
 Pseudocode

The design of a program is very important as it allows the programmer to
think about the structure of the program before they begin to create it.

The most common way to design the logic of a program is to use a text-
based notation known as Pseudocode. Pseudocode is a cross between
a programming language and our own English language. It makes a
program easier to understand without relying on the use of a programs
complex commands and syntax.

The design is built up of two parts, the first is the Stepwise Design. This shows the main
steps of the program. The second part is the Stepwise Refinement. This involves breaking
these main steps into even smaller steps so eventually, one line of pseudocode becomes
one line of program code. The design language used for the refinements is called HAGGIS
and is a requirement of the SQA.

Here is the program pseudocode to calculate the volume of a room using the variables
Room_Length, Room_Breadth, Room_Height and Room_Volume. Study the pseudocode
very closely to understand what is going on:

Stepwise Design (the main steps of the program)

1.! Setup Variables
2.! Get Room Measurements!
3.! Calculate Room Volume
4.! Display Room Volume

Stepwise Refinement (the main steps further refined into smaller steps)

1.! Setup Variables
1.1! SET Room_Length TO Real 0.00
1.2! SET Room_Breadth TO Real 0.00
1.3! SET Room_Height TO Real 0.00
1.4! SET Room_Volume TO Real 0.00

2.! Get Room Measurements
2.1! RECEIVE Room_Length FROM (Real) KEYBOARD
2.2! RECEIVE Room_Breadth FROM (Real) KEYBOARD
2.3! RECEIVE Room_Height FROM (Real) KEYBOARD

3.! Calculate Room Volume
3.1! SET Room_Volume TO Room_Length * Room_Breadth * Room_Height

4.! Display Room Volume
4.1! SEND Room_Volume TO DISPLAY

Stepwise Refinement:
The main steps are broken down
further (refined). We use 3.1, 3.2,
3.3, etc.

Notice that the pseudocode looks
more like our own language rather
than that of the programs.

HAGGIS Design
Language

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 4

 What are Variables?

Variable Rules

Variables cannot contain any spaces and must not be a reserved command in
LiveCode. You can tell if a variable has been accepted as it will appear in black font
when it is typed into the text editor as shown below:

In order for the program to know which data is a variable and which is
text to be printed in a put statement, the ampersand & is used.

The ampersand separates both the variable and the text to be printed
on the screen. Two ampersands && together will also include a single
space when the text is printed. For example the following code:

....will produce:
“The volume of this room is 3000 cubic metres.”

Put "The volume of this room is" &&Room_Volume&& "cubic metres." into field “Output”

 Ask "Please enter the length of the room in metres"

 Put it into Room_Length This is the variable

Let’s talk about variables as they are very important in programming.

To put it simply, a variable is like a “box” into which data can be placed
whilst a program is running. We give variables names (identifiers) which
suggest or give us a clue as to what data is being held in the variable.

Variables can be store different types of data, for example:

• Text (known as strings), e.g. Steven, Jim, or Hello etc.
• Real numbers, (numbers with a decimal point) e.g. 3.14, 5.7 or 11.16, etc.
• Integer numbers, (whole numbers) e.g. 5, 7 or 102, etc.
• Boolean (two state values), e.g. Yes/No, True/False, 1/0, etc.

Your Program

Variables are
identifiers in RAM

used to store data in
a running program.

Name Age Height

Declaring Variables in LiveCode

 Put 0.00 into Room_Length

 // Setup a Real variable called Room_Length and put 0.00 into this variable

 Put “” into Player_Name

 // Setup a String variable called Player_Name and put “” into this variable

 Put 0 into Number_Correct

 // Setup an Integer variable called Number_Correct and put 0 into this variable

 Put False into Found

 // Setup a Boolean variable called Found and put False into this variable

 Put True into Found

 // Setup a Boolean variable called Found and put True into this variable

PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 5

 Classification of Variables
Variables fall into two main types. The type of a variable determines where it can be
used in a program.

The two main types of variable are local variables and global variables. A description
of each is given below. It is important that you understand the difference as you will be
using both types of variable.

A local variable is one which only exists within one subroutine,
function or procedure.

Local variables are created when the subroutine is called (run) and
are then destroyed when the subroutine terminates. They cannot
be accessed or assigned a value except within that subroutine.

The example below shows the use of a local variable:

On Get_Users_Name
 // Setup the local variable to be used in this subroutine
 Local Key_Pressed

 REPEAT until key_pressed = "Y" or key_pressed = "y"
 Ask "Please enter your name"
 Put it into The_Name_Of_Person
 Ask "Are you happy with the name entered? (Y or y for yes)"
 Put it into Key_Pressed
 END REPEAT
End Get_Users_Name

In the subroutine get_users_name, the local variable key_pressed is created. The
purpose of this variable is to check whether or not the user is happy with the name that
they have entered by keying in “Y” or “y”, otherwise the program will keep looping. This
local variable is unique to this subroutine and cannot be used in any other subroutine.

The advantage of using local variables is that it prevents them from being used
elsewhere in the program and possibly having their contents accidentally changed.

Global Variables A global variable is one which can be accessed and altered from
any part of the program, even from another script/event so long as
it is declared at the very start.

Global variables should always be used with care as their values
may accidentally change if the programmer forgets that they have
already used them in another subroutine. The example below
shows the setting up of a series of global variables in LiveCode:

// Setup the global variables to be used in this event
Global Name_Of_Person, Age_Of_Person, Address_Of_Person

In the code snippet above three global variables have been created. These variables
can be used in any subroutine and in any LiveCode event so long as they are
declared at the start of the event in the same way as shown above.

Local Variables

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 6

 LiveCode
LiveCode is a modern programming environment that has been created by an
Edinburgh-based company called Runtime Revolution, www.runrev.com.

LiveCode is advertised as being a very high level language and is considered to be
even closer to the way we speak and write as opposed to the sometimes complex
commands and syntax used in other high-level programming environments.

Users can use LiveCode to create any type of program. This could range from a
simple application which performs addition to a more advanced game application that
could be run on a desktop computer or mobile phone.

LiveCode is an event-driven programming language which means that it involves
the triggering of events such as a mouse click on a button or text entry into an Output
field.

The LiveCode programming environment very portable which means that it can run on
a variety of operating system platforms. This includes a PC running Windows XP,
Vista, Windows 7 and 8 or Linux as well as on a Mac running OS X.

At least 400MB of hard disk space and 256MB of RAM is required in order for the
programming language to run.

The LiveCode programming environment has already been installed in the
Applications folder (mac) or Program Files (Windows PC).

You will need to copy the LiveCode Programming Tasks from the National 5
LiveCode Programming area of Glow to your own programming folder within your
user folder. This folder contains the National 5 LiveCode stacks for all 10 tasks that
you will do during this programming unit.

N5 > Software Design & Development > N5 LiveCode Programming

IMPORTANT

http://www.runrev.com
http://www.runrev.com

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 7

 Task 1: Volume of a Room

Specification

A simple program required to calculate the volume of a room.
The user will be asked for the length, breadth and height of
the room in metres and then once calculated, the program
will display the volume of the room in cubic metres.

Design: Pseudocode for “Calculate Room Volume” Button

Stepwise Design (the main steps of the program)

1.! Setup Variables
2.! Get Room Measurements!
3.! Calculate Room Volume
4.! Display Room Volume

Stepwise Refinement (the main steps further refined into smaller steps)

1.! Setup Variables
1.1! SET Room_Length TO Real 0.00
1.2! SET Room_Breadth TO Real 0.00
1.3! SET Room_Height TO Real 0.00
1.4! SET Room_Volume TO Real 0.00

2.! Get Room Measurements
2.1! RECEIVE Room_Length FROM (Real) KEYBOARD
2.2! RECEIVE Room_Breadth FROM (Real) KEYBOARD
2.3! RECEIVE Room_Height FROM (Real) KEYBOARD

3.! Calculate Room Volume
3.1! SET Room_Volume TO Room_Length * Room_Breadth * Room_Height

4.! Display Room Volume
4.1! SEND Room_Volume TO DISPLAY

Implementation

After reading through the above design
carefully, you are now ready to begin
producing your program code.

Key the code in over the page carefully and
correct any coding errors that you make.

HAGGIS Design
Language

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 8

 Task 1: Volume of a Room

Implementation (continued)

Open the “Volume of a Room” stack. It can be found in:

N5 LiveCode Programming > 1_Volume of a Room.livecode

Enter the script below carefully into the Calculate Volume button. Check that the
program works correctly by keying in some test data.
See if the same result is produced if you key in the same numbers using a calculator.

// Setup the global variables to be used in this event
Global Room_Length, Room_Breadth, Room_Height, Room_Volume

On MouseUp
 Setup_Variables
 Get_Room_Measurements
 Calculate_Room_Volume
 Display_Room_Volume
End MouseUp

On Setup_Variables
 // Setup variables to 0.00 (real data types)
 Put 0.00 into Room_Length
 Put 0.00 into Room_Breadth
 Put 0.00 into Room_Height
 Put 0.00 into Room_Volume
End Setup_Variables

On Get_Room_Measurements
 // Get the room measurements from the user
 Ask "Please enter the length of the room in metres"
 Put it into Room_Length
 Ask "Please enter the breadth of the room in metres"
 Put it into Room_Breadth
 Ask "Please enter the height of the room in metres"
 Put it into Room_Height
End Get_Room_Measurements

On Calculate_Room_Volume
 // Calculate the volume of the room
 Put (Room_Length * Room_Breadth * Room_Height) into Room_Volume
End Calculate_Room_Volume

On Display_Room_Volume
 // Display the volume of the room using the result within the room_volume variable
 Put "The total volume of this room is " & Room_Volume & " cubic metres." into field "Output"
End Display_Room_Volume

Testing

Once you have got your program running, remember to test that it works correctly by
producing the correct Output.

Edit ModeRun Mode

Make sure you have selected the
“Calculate Volume” button and

are in Edit Mode.

Select the “Code” button at the
top left of the toolbar.

You will now enter the lines of
program code on the left page

very carefully.

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 9

 LiveCode Commands and Loops
The LiveCode program area has three areas:!
1.! The variable list - lists all variables used in the program
2.! The event list - this is a list of all subroutines which are run
! when the event is triggered by the user.
3.! The subroutines - contain the lines of code to be executed.

PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE

ASK is a command that allows the programmer to ask the user a question or
ask the user for a response. For example:

Ask "Please enter the length of the room in metres"

PUT is a command that allows the programmer to transfer the users response
(it) into a meaningful variable. For example:

Put it into Room_Length

//
are used to put internal commentary into a program or to space out
different parts of the program to make it easier to read. For example:

// Display the volume of the room

On and End are used to start and end of a subroutine. A subroutine must be
started and ended, for example:

On Display_Room_Volume
 Put "The room volume is " & Room_Volume into field “Output”
End Display_Room_Volume

Fixed
LOOP

One way to get one or more lines of code to repeat is by using a loop. The two
main types of loop are: a fixed loop and a conditional loop.

A REPEAT with loop can be used to repeat a piece of code as many times as
the user sets it up for. In the example below, the loop is fixed at repeating the
message “Hello World!” 4 times only.

 REPEAT with loop = 1 to 4
 Put "Hello Word!"
 END REPEAT

A REPEAT until loop can be used to repeat a line of code until a certain
condition is met. In the example below, the loop will not finish until the user
enters a valid number between 0 and 100. This is the condition.

 Ask "Please enter a number between 0 and 100.”
 Put it into Number
 REPEAT until Number >= 0 and Number <= 100
 Ask "Invalid number. Please re-enter a number between 0 and 100."
 Put it into Number
 END REPEAT

Conditional

LOOP

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 10

 The LiveCode Text Editor & Error Checking
PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE

During implementation of a program, LiveCode uses an interpreter translator program
to help check for errors (see your Software Design and Development notes for a
description of this type of translator program).

In the above program, the user is told of an error on line 6 “Get_Room_Measurements”.
The user needs to look at this line then scan down the program to see that they have in
fact called the event on lines 19 and 27 “Get_Room_Measurement” (5).

The LiveCode text
editor gives you a
list of all the events
you have created
within the program
(2).

The LiveCode text
editor also has the
ability to find any
term in a program
(3).

The LiveCode text editor has a wide range of editing features to help make
programming easier (1).

(3)

(2)

(4)

(5)

(1)

The LiveCode text editor will
also give you a complete list
of all variables and arrays
used in the program (4).

LiveCode comes with uploaded User Sample (6)
programs and Online Tutorials (7) to help them with
their programming.

The LiveCode toolbar comes with lots of ways of
accessing LiveCode available commands and
resources. The Dictionary, can be called upon to gain
access to all of the LiveCode commands (8).

(8)
(6) (7)

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 11

 Task 2: Music Shop Takings

Specification

A program is required take in the number of CD’s, DVD’s and Blu-Ray Disks
sold over the course of a day. The program will then calculate and display
the total takings, based on the prices of CD’s (£7.99), DVD’s (£10.99) and
Blu-Ray Disks (£14.99).

Design: Pseudocode for “Go” Button

Stepwise Design (the main steps of the program)
1. Setup Variables! !
2. Get Number Of Items Sold
3. Calculate Total Takings
4. Display Total Takings

Stepwise Refinement (the main steps further refined into smaller steps)
1.! Setup Variables
1.1! SET CDs_Sold TO Integer 0
1.2! SET DVDs_Sold TO Integer 0
1.3! SET BluRays_Sold TO Integer 0
1.4! SET Total_Takings TO Real 0.00

2.! Get Number Of Items Sold
2.1! RECEIVE CDs_Sold FROM (Integer) KEYBOARD
2.2! RECEIVE DVDs_Sold FROM (Integer) KEYBOARD
2.3! RECEIVE BluRays_Sold FROM (Integer) KEYBOARD

3.! Calculate Total Takings
3.1! SET Total_Takings TO CDs_Sold * 7.99 + DVDs_Sold * 10.99 + BluRays_Sold * 14.99

4.! Display Total Takings
4.1! SEND CDs_Sold TO DISPLAY
4.2! SEND DVDs_Sold TO DISPLAY
4.3! SEND BluRays_Sold TO DISPLAY
4.4! SEND Total_Takings TO DISPLAY

HAGGIS Design
Language

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 12

 Task 2: Music Shop Takings
Implementation

Open the “Music Shop Takings” stack. It can be found in:

N5 LiveCode Programming > 2_Music Shop Takings.livecode

Copy the script below carefully into the “Go” button. Check that the program works
correctly by keying in some test data. See if the same result is produced if you key in
the same numbers using a calculator.

// Setup the global variables to be used in this event
Global CDs_Sold, DVDs_Sold, BluRays_Sold, Total_Takings

On MouseUp
 Setup_Variables
 Get_Number_Of_Items_Sold
 Calculate_Total_Takings
 Display_Total_Takings
End MouseUp

On Setup_Variables
 // Initialise the variables
 Put 0 into CDs_Sold
 Put 0 into DVDs_Sold
 Put 0 into BluRays_Sold
 Put 0.00 into Total_Takings
End Setup_Variables

On Get_Number_Of_Items_Sold
 // Get the number of CDs, DVDs and Blu-Ray Disks sold
 Ask "Please enter the number of CD's sold today: "
 Put it into CDs_Sold
 Ask "Please enter the number of DVD's sold today: "
 Put it into DVDs_Sold
 Ask "Please enter the number of Blu-Ray's sold today: "
 Put it into BluRays_Sold
End Get_Number_Of_Items_Sold

On Calculate_Total_Takings
 // Calculate the total cost by taking the amount of items sold by the user and multiplying it by
 // the of each product
 Put CDs_Sold * 7.99 + DVDs_sold * 10.99 + BluRays_Sold * 14.99 into Total_Takings
End Calculate_Total_Takings

On Display_Total_Takings
 // Display the quantity of each type of produce sold during the day
 Put CDs_Sold into line 1 of field "Output1"
 Put DVDs_Sold into line 2 of field "Output1"
 Put BluRays_Sold into line 3 of field "Output1"

 // Display the total cost
 Put "Today you have made a total of £" & Total_Takings into field "Output2"
End Display_Total_Takings

Testing

Once you have got your program running, remember to test that it works correctly by
producing the correct Output.

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 13

 Task 3: Three Additions

Specification

A program is required to test basic addition. The program will
ask the user for their name, check to see if it’s acceptable, then
ask the user to answer three simple additions of two numbers
(between 1 and 9). The answer will then be checked by the
program and a comment about the answer will be displayed.

The number correct out of three along with a comment should be displayed in an Output field.

Design: Pseudocode for “Plus” graphic

Stepwise Design (the main steps of the program)
1.! Setup Variables
2.! Get The Users Name
3.! Three Additions!

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup Variables
1.1! SET Name_Of_Person TO String “”
1.2! SET First_Number TO Integer 0
1.3! SET Second_Number TO Integer 0
1.4! SET The_Answer TO Integer 0

2. Get The Users Name
2.1! SET Key_Pressed TO local variable
2.2! REPEAT until Key_Pressed = “Y” OR Key_Pressed =”y”
2.3! RECEIVE Name_Of_Person FROM (string) KEYBOARD
2.4! RECEIVE “Y” or “N” FROM (String) KEYBOARD
2.5! END REPEAT

3. Three Additions
3.1! SET Number_Correct TO local variable
3.2! SET Number_Correct TO integer 0
3.3! REPEAT with loop = 1 to 3
3.4! SET First_Number TO Random (0-9)
3.5! SET Second_Number TO Random (0-9)
3.6! RECEIVE the_answer FROM (integer) KEYBOARD
3.7! IF cancel button is pressed THEN exit
3.8! SEND The_Answer TO DISPLAY
3.9! IF The_Answer = First_Number + Second_Number THEN
3.10! SEND “Correct Answer, Well Done!” TO DISPLAY
3.11! SET Number_Correct TO Number_Correct + 1
3.12! ELSE
3.13! SEND “Wrong Answer.” TO DISPLAY
3.14! END IF
3.15! END REPEAT

3.16! SEND How many questions out of 3 the user got correct TO DISPLAY
3.17! IF Number_Correct is = 0 THEN SEND “Very disappointing” TO DISPLAY
3.18! IF Number_Correct is = 1 THEN SEND “Disappointing” TO DISPLAY
3.19! IF Number_Correct is = 2 THEN SEND “Good work” TO DISPLAY
3.20! IF Number_Correct is = 3 THEN SEND “Full Marks, Well done!” TO DISPLAY

HAGGIS Design
Language

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 14

 Task 3: Three Additions

Implementation

Open the “Three Additions” stack. It can be found in:

N5 LiveCode Programming > 3_Three Additions.livecode

Enter the script below carefully into the “Plus” graphic. Check that the program works
correctly by keying in some test data. See if the same result is produced if you key in
the same numbers using a calculator.

// Setup the global variables to be used in this event
Global Name_Of_Person, First_Number, Second_Number, The_Answer

On MouseUp
 Setup_Variables
 Get_Users_Name
 Three_Additions
End MouseUp

On Setup_Variables
 // Setup all the variables to null or 0
 Put "" into Name_Of_Person
 Put 0 into First_Number
 Put 0 into Second_Number
 Put 0 into The_Answer
End Setup_Variables

On Get_Users_Name
 // Setup a local variable to check if a key has been pressed
 Local Key_Pressed

 // A loop is used to ask the user if they are happy with the name they have
 // entered. Y or y indicates they are happy and loop is exited.
 REPEAT until Key_Pressed = "Y" or Key_Pressed = "y"
 Ask "Please enter your name"
 Put it into Name_Of_Person
 Ask "Are you happy with the name entered? (Y or y for yes)"
 IF the result = "Cancel" THEN exit to top
 Put it into Key_Pressed
 END REPEAT
End Get_Users_Name

The code is continued on the next page

Plus graphic
(a button can also be a graphic)

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 15

 Task 3: Three Additions

Implementation (continued)

On Three_Additions
 // Setup a local variable to keep track of the number of sums correct
 Local Number_Correct
 Put 0 into Number_Correct

 // This fixed loop asks the user three basic arithmetic questions
 REPEAT with loop = 1 to 3
 // The numbers are randomly generated between 1 and 9
 Put Random (9) into First_Number
 Put Random (9) into Second_Number
 Ask "What is " & First_Number & “ added to " & Second_Number &"?"
 IF the result = "Cancel" THEN exit to top

 Put it into The_Answer

 Put "So you think " & First_Number & " added to " & Second_Number & " is "
 & The_Answer into line loop of field "Output" // On the same line

 IF The_Answer = First_Number + Second_Number THEN
 Answer "Correct answer, well done!"
 Add 1 to Number_Correct
 ELSE
 Answer "Wrong answer!"
 END IF
 END REPEAT

 Put "Well" &&name_of_person& ", out of 3 you got" &&number_correct&& "correct."
 into line 5 of field "Output" // On the same line

 IF Number_Correct = 0 THEN Put "Very Disappointing" into line 7 of field "Output"
 IF Number_Correct = 1 THEN Put "Disappointing" into line 7 of field "Output"
 IF Number_Correct = 2 THEN Put "Good work!" into line 7 of field "Output"
 IF Number_Correct = 3 THEN Put "Full Marks, well done!" into line 7 of field "Output"

End Three_Additions

Testing

Check that the program works correctly by keying in some test data.
See if the same results are produced if you work out the same
answers in your head.

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 16

Task

A program is required to test a users basic subtraction. The program will ask the user for their
name, check to see if they are happy with the name entered and then ask them to answer five
subtractions of two numbers (between 1 and 20). Each answer will then be checked by the
program and a comment about the answer will be displayed.

The number correct out of five along with a suitable comment depending on the mark they
get should be displayed in the Output field. You can make up whatever comments you like.

Sample Output is shown below:

Your task is to do the following:

• Create the program script for the above problem using the code from the previous task to
help (you may wish to copy the script and amend it).

• You must include internal commentary.
• Assign the code to the “minus” graphic.
• Create a clear button and produce a simple script to clear the Output field.

! Note. Look at the clear script from the previous program to help you.
• Test that your program produces the correct results
• Show the teacher your working program once completed.

The LiveCode stack to produce the script can be found in:

N5 LiveCode Programming > 4_Five Subtractions.livecode

Good Luck!

 Task 4: Five Subtractions

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 17

Logical Operators like AND, OR and NOT are very useful for decision making. They are usually used
within an IF statement.

Below is an example of how the AND and OR operators can be used. In the example below, the user is
asked three questions on capital cities. Using the AND and OR operators, a decision can be made as to
whether the user is getting the questions correct. Read the following program code carefully.

// Setup the global variables to be used in this event
global Answer1, Answer2, Answer3

On MouseUp
 Setup_Variables
 Ask_Questions
 Decide
End MouseUp

on Setup_Variables
 // Setup the string variables to be used in this program
 Put “” into Answer1
 Put “” into Answer2
 Put “” into Answer3
end Setup_Variables

on Ask_Questions
 // Ask the user three simple Capital City questions
 Ask "What is the Capital City of France?"
 Put it into Answer1
 Ask "What is the Capital City of Spain?"
 Put it into Answer2
 Ask "What is the Capital City of Germany?"
 Put it into Answer3
end Ask_Questions

on Decide
 // IF the answer to France is equal (=) to Paris AND the answer to Spain is equal to Madrid AND
 // the answer to Germany is equal to Berlin then the user has got all of the answers correct.
 // Display a suitable message in the field called output.

 IF Answer1 = "Paris" AND Answer2 = "Madrid" AND Answer3 = "Berlin" THEN
 Put "Well done, you got all the Capital Cities correct!!" into field "output"
 END IF

 // IF the answer to France is NOT equal (<>) to Paris OR the answer to Spain is NOT equal to
 // Madrid OR the answer to Germany is NOT equal to Berlin then the user has either got one or
 // two of the answers incorrect. Display a suitable message in the field called output.

 IF Answer1 <> "Paris" OR Answer2 <> "Madrid" OR Answer3 <> "Berlin" THEN
 Put "Good effort, you didn't get all the Capital Cities correct though." into field "output"
 END IF

 // IF the answer to France is NOT equal (<>) to Paris AND the answer to Spain is NOT equal to
 // Madrid AND the answer to Germany is NOT equal to Berlin then the user has
 // got all of the answers incorrect. Display a suitable message in the field called output.

 IF Answer1 <> "Paris" AND Answer2 <> "Madrid" AND Answer3 <> "Berlin" THEN
 Put "Poor show! You got none of the Capital Cities correct" into field "output"
 END IF

End decide

 Logical Operators
PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 18

Iain would like a program created which will
calculate the total amount of sales of iPods in
his shop on a daily basis and give the employee
that is working on that day a special bonus if they
sell over a certain amount of iPods.

The three types of Apple iPods he sells are
shown below along with their price.

Specification

 Task 5: Iain’s iPod Takings

The program should take in the amount of iPod Touch’s, iPod Classic’s and iPod
Nano’s sold over the course of the day.

The total cost of all iPods sold should be calculated and displayed.

In order for the employee to get a bonus on the sales they make from the iPods, they
must sell at least 12 iPod Touch’s and either 8 iPod Classic’s or 10 iPod Nano’s.

If they meet the above criteria, then a suitable message should be displayed telling
them that they should get a bonus.

Else, they should be told that sales were not high enough for that day and that they
should not get a bonus.

iPod Classic
£150.00

iPod Touch
£220.00

iPod Nano
£90.00

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 19

 Task 5: Iain’s iPod Takings

Stepwise Design (the main steps of the program)
1. Setup Variables
2. Get Number Sold
3. Calculate Total Cost
4. Display and Decide

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup Variables
1.1! SET Touch TO Integer 0
1.2! SET Classic TO Integer 0
1.3! SET Nano TO Integer 0
1.4! SET Total TO Integer 0

2. Get Number Sold
2.1! RECEIVE Touch FROM (Integer) KEYBOARD
2.2! RECEIVE Classic FROM (Integer) KEYBOARD
2.3! RECEIVE Nano FROM (Integer) KEYBOARD

3. Calculate Total Cost
3.1! SET Total TO Touch * 220 + Classic * 150 + Nano * 90

4. Display and Decide
4.1! SEND Touch TO DISPLAY
4.2! SEND Classic TO DISPLAY
4.3! SEND Nano TO DISPLAY
4.4! SET Number Format TO “00.00”
4.5! SEND “£” followed by the contents of total TO DISPLAY
4.6! IF Touch >= 12 AND (Classic >= 8 OR Nano >=10) THEN
4.7! SEND You get a bonus on today’s sales TO DISPLAY
4.8! ELSE
4.9! SEND Not enough iPods of each type have been sold to entitle you to a bonus. TO DISPLAY
4.10! END IF

Design

The design of the program is shown below:

Implementation

You are now going to use the design above to help code the
solution for this program. It will also help to use the code
from previous programs if you get stuck.

Open the LiveCode stack called “Iain’s iPod Takings”.

It can be found in:

N5 LiveCode Programming > 5_Iain’s iPod Takings.livecode

Assign your code to the Calculate Bonus button and test
your program works correctly by calculating the total amount
made and the correct decision. You can compare your
Output to the screenshot shown on the right.

Good luck!

HAGGIS Design
Language

This field is called Output1

This field is called Output2

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 20

 Task 6: Choosing Colours
Specification

A switch statement can be very useful when you have a
number of possible inputs and you want to respond
individually to all the possibilities (cases).

For example: A program is required to take in a colour and
display an appropriate message for that colour. The card
background and text should also change to that colour.

If the colour entered does not match any of the cases, the program assumes the Output field is empty
and you should display a message to the user saying that there is no message for that colour.

Design: Pseudocode for the “Ask Colour” button

Stepwise Design (the main steps of the program)
1.! Setup Variable
2.! Choose Colour

Stepwise Refinement (the main step further refined into smaller steps)
1. Setup Variable
1.1! SET TheColour TO String “”

2.! Choose Colour
2.1! RECEIVE TheColour FROM (string) KEYBOARD

2.2! CASE TheColour OF
2.3! WHEN “Red”
2.4! SET background and font colour TO red
2.5! SEND a message saying blood is red TO DISPLAY

2.6! WHEN “Blue”
2.7! SET background and font colour TO blue
2.8! SEND a message saying blood is blue TO DISPLAY

2.9! WHEN “Green”
2.10! SET background and font colour TO green
2.11! SEND a message saying blood is green TO DISPLAY

2.12! WHEN “Black”
2.13! SET background and font colour TO black
2.14! SEND a message saying blood is black TO DISPLAY

2.15! WHEN “Yellow”
2.16! SET background and font colour TO yellow
2.17! SEND a message saying blood is yellow TO DISPLAY
2.18! END CASE

2.19! IF the Output field is empty THEN
2.20! SET the background colour TO grey AND text colour TO black
2.21! SEND a message saying that there is no message for that colour TO DISPLAY
2.22! END IF

Implementation

Open the “Choosing Colors” stack. It can be found in:

N5 LiveCode Programming > 6_Choosing Colours.livecode

HAGGIS Design
Language

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 21

 Task 6: Choosing Colours
Implementation

Add the following script to the Ask Colour button and test that your program produces the correct results for each
colour.

Global TheColour

On MouseUp
 Setup_Variable
 Choose_Colour
End MouseUp

On Setup_Variable
 // Setup the variable to be used in this subroutine
 Put “” into TheColour
End Setup_Variable

On Choose_Colour
 // Setup the card
 Put empty into field "Output"
 Set the backgroundColor of this card to 220,220,220
 Set the textColor of field "Output" to 0,0,0
 // Prompt the user for their colour
 Ask "Please enter your colour"
 Put it into TheColour

 SWITCH TheColour
 // In the case that the colour is red, blue, green, black or yellow, display a message and change
 // the colour of the text and background to that colour using its RGB code.
 CASE "Red"
 Put "Blood is red" into line 1 of field "Output"
 Set the backgroundColor of this card to 255,0,0
 Set the textColor of field "Output" to 255,0,0
 Break
 CASE "Blue"
 Put "The sea is blue" into line 1 of field "Output"
 Set the backgroundColor of this card to 0,0,255
 Set the textColor of field "Output" to 0,0,255
 Break
 CASE "Green"
 Put "Grass is green" into line 1 of field "Output"
 Set the backgroundColor of this card to 85,107,47
 Set the textColor of field "Output" to 85,107,47
 Break
 CASE "Black"
 Put "Coal is black" into line 1 of field "Output"
 Set the backgroundColor of this card to 0,0,0
 Set the textColor of field "Output" to 0,0,0
 Break
 CASE "Yellow"
 Put "The sun is yellow" into line 1 of field "Output"
 Set the backgroundColor of this card to 255,255,0
 Set the textColor of field "Output" to 255,255,0
 Break
 END SWITCH

 // Set to default if no colour or an invalid colour is entered
 IF field "Output" is empty THEN
 Set the backgroundColor of this card to 220,220,220
 Set the textColor of field "Output" to 0,0,0
 Put "There is no message for that colour" into line 1 of field "Output"
 END IF
End choose_colour

Use the website www.tayloredmktg.com/rgb/
to get the RGB colour code for the colours you
have chosen.

After you have finished, add another three
colours of your choice along with your own
message for those colours.

http://www.tayloredmktg.com/rgb/
http://www.tayloredmktg.com/rgb/

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 22

 Arrays (IMPORTANT)

An array is a structured data type that is used for storing sets of data within a single variable.

To put it simply, an array is a variable which can store more than one piece of data in it so long as it is of
the same data type.

Like variables, arrays must be setup at the start of an event. Look at and understand the example
program below. It uses an array called arrayName and one variable called max_students which sets the
number of student names to be stored in the array to 5.

// Setup the global array and variable to be used in this event
Global arrayName, max_students

On MouseUp
 // Number_of_Students will be set to five so five
 // names will be entered and stored in the array
 Put 5 into number_of_students
 Get_Student_Name
 Display_Student_Name
End MouseUp

On Get_Student_Name
 // Start a fixed loop which will repeat five times
 // for each name to be stored in arrayName
 REPEAT with loop = 1 to number_of_students
 // Get the students name
 Ask "Please enter the name of student: " & loop
 Put it into arrayName[Loop]
 END REPEAT
End Get_Student_Name

On Display_Student_Name
 // Start a fixed loop
 REPEAT with loop = 1 to number_of_students
 // Put each name entered into arrayName
 // into each line of the Output field using loop
 Put arrayName[Loop] into line loop of field “Output”
 END REPEAT
End Display_Student_Name

After the five names have been entered, the following Output
will be produced using arrayName:

PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE

Think of an Array as being
a bit like a bunk bed

The program knows that arrayName is an array
because of the [loop] straight after it.

[loop] indicates the current element (space)
allocated to the array when it is used in a loop. This
can be used to store the users data. In this
program, the loop repeats five times as
max_students is set to 5 in advance.

So, when the loop starts, the user can enter the five
names, similar to that below. Notice that all data in
the array are of the same type in this case, string
(text):

REPEAT with loop = 1 to max_students
 arrayName[loop] - “Steve” - put into 1st element of array
 arrayName[loop] - “Dave” - put into 2nd element of array
 arrayName[loop] - “Mike” - put into 3rd element of array
 arrayName[loop] - “Liam” - put into 4th element of array
 arrayName[loop] - “Allan” - put into 5th element of array
END REPEAT

The contents of the array can be displayed using
the variable loop to ensure all values in each
element (space) are displayed in each line (loop) 1,
2, 3, 4, 5 of the Output field.

3rd Element of arrayBunk

2nd Element of arrayBunk

1st Element of arrayBunk

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 23

 Getting to Grips with Arrays

Design: Pseudocode for “Get Details” Button

Stepwise Design (the main steps of the program)
1.! Setup Arrays And Variable
2.! Get Student Details
3.! Display Details
! ! ! !
Stepwise Refinement (the main steps further refined into smaller steps)
1.! Setup Arrays And Variable
1.1! SET arrayName TO String “”
1.2! SET arraySchool TO String “”
1.3! SET arrayYear TO String “”
1.4! SET Number_Of_Students TO Integer 5

2. Get Student Details
2.1! REPEAT with loop = 1 to Number_Of_Students
2.2! RECEIVE arrayName[loop] FROM (String) KEYBOARD
2.3! RECEIVE arraySchool[loop] FROM (String) KEYBOARD
2.4! RECEIVE arrayYear[loop] FROM (String) KEYBOARD
2.5! END REPEAT

3.! Display Details
3.1! SEND “Student Name” & TAB & “Student School” & TAB & “Student Year” TO DISPLAY
3.2! REPEAT with loop = 1 to Number_Of_Students
3.3! SEND arrayName[loop] & TAB & arraySchool[loop] & TAB & arrayYear[loop]
! TO DISPLAY
3.4! END REPEAT

 Task 7: Using Arrays
Specification

Take the program above further by expanding it by not only asking for five
student names but also their school attended and year group.

This details entered should then be displayed in neat columns in the
Output box. The TAB function will allow you to do this.

Implementation

Open the “Using Arrays” stack. It can be found in:

N5 LiveCode Programming > 7_Using Arrays.livecode

HAGGIS Design
Language

Testing

Test your program once complete. Output should look similar to that shown above.

You can choose your own names, year groups and schools names.

The design of this program is shown below to give you a hand. Look at this carefully before starting.

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 24

 Task 10: Youth Orchestra Program
Specification

A program is required to display the
names, ages and two test marks out of
50 for pupils hoping to join the junior
(12-14 years) and senior (15-17 years)
orchestra. Both the ages and marks
should be validated.

The total of the first and second marks
should be worked out and a decision
should be made as to whether or not
they can join the junior or senior
orchestra depending on their age.

If the students total mark is over 70 and depending on their age, they are accepted to
the orchestra. All of this information should be displayed in an Output field.

Design: Pseudocode for “Get Details” Button

Stepwise Design (the main steps of the program)
1.! Setup variables
2.! Get details
3.! Make Decision
4. Display Data
5. Validate Mark

Stepwise Refinement (the main steps further refined into smaller steps)
1. Setup variables
1.1! SET arrayName TO String “”
1.2! SET arrayAge TO Integer 0
1.3! SET arrayMark1 TO Integer 0
1.4! SET arrayMark2 TO Integer 0
1.5! SET arrayTotal TO Integer 0
1.6! SET arrayDecision TO String “”
1.7! SET Number_Of_Students TO Integer 4
1.8! SET Check_Mark TO Integer 0
1.9! SET Check_Age TO Integer 0

2. Get details!
2.1! REPEAT with loop = 1 TO Number_Of_Students
2.2! RECEIVE arrayName[loop] FROM (String) KEYBOARD
2.3! RECEIVE Check_Age FROM (Integer) KEYBOARD
2.4! REPEAT UNTIL Check_Age is between 12 and 17 AND Check_Age is an integer
2.5! SEND error message if an invalid age is entered TO DISPLAY
2.6! IF the cancel button is pressed THEN exit to the top of the program
2.7! RECEIVE Check_Age FROM (Integer) KEYBOARD
2.8! END REPEAT
2.9! SET arrayAge[loop] TO Check_Age
2.10! RECEIVE Check_Mark FROM (Integer) KEYBOARD

The design is continued on the next page

HAGGIS Design
Language

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 25

 Task 8: Youth Orchestra Program

2.11! CALL the Validate Mark function
2.12! SET arrayMark1[loop] TO Check_Mark once validated
2.13! RECEIVE Check_Mark FROM (Integer) KEYBOARD
2.14! CALL the Validate Mark function
2.15! SET arrayMark2[loop] TO Check_Mark once validated
2.16! SET arrayTotal[loop] TO arrayMark1[loop] + arrayMark2[loop]
2.17! END REPEAT

3.! Make Decision
3.1! REPEAT with loop = 1 TO Number_Of_Students
3.2! IF arrayAge[loop] is between >=12 AND <=14 AND arrayTotal[loop] > 70 THEN SET

arrayDecision[loop] TO “You are accepted to junior orchestra”
3.3! IF arrayAge[loop] is between >=15 AND <=17 AND arrayTotal[loop] > 70 THEN SET

arrayDecision[loop] TO “You are accepted to the senior orchestra”
3.4! IF arrayTotal[loop] <= 70 THEN SET arrayDecision[loop] TO “You have been declined

to the orchestra.”
3.5! END REPEAT

4.! Display Data
4.1! SEND “Name” & TAB & “Age” & TAB & “ First Mark” & TAB & “Second Mark” & TAB &
! “Total Mark” & TAB & “Decision” TO DISPLAY
4.2! REPEAT with loop = 1 TO Number_Of_Students
4.3! SEND arrayName[loop] & TAB & arrayAge[loop] & TAB & arrayMark1[loop] & TAB &

arrayMark2[loop] & TAB & arrayTotal[loop] & TAB & arrayDecision[loop] TO DISPLAY
4.4! END REPEAT

5.! Validate Mark
5.1! REPEAT UNTIL Check_Mark >= 1 AND Check_Mark <=50 AND Check_Mark is an
! Integer
5.2! SEND a message telling the user that they have entered an invalid mark TO DISPLAY
5.3! IF the cancel button is pressed THEN exit to the top of the program
5.4! RECEIVE Check_Mark FROM (Integer) KEYBOARD
5.5! END REPEAT

Implementation

Once you have read the design above,
open the “Youth Orchestra Program”
stack. It can be found in:

N5 LiveCode Programming >
8_Youth Orchestra Program.livecode

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 26

 Task 8: Youth Orchestra Program
Implementation (continued)

Assign the following script to the Get Details button.

The code is continued on the next page

// Setup the global arrays and variables to be used in this event
Global arrayName, arrayAge, arrayMark1, arrayMark2, arrayTotal, arrayDecision, Number_Of_Students,
Check_Mark, Check_Age

On MouseUp
 Setup_Arrays_And_Variables
 Get_Details
 Make_Decision
 Display_Data
End MouseUp

On Setup_Arrays_And_Variables
 // Initialise the global variables and arrays
 Put “” into arrayName
 Put 0 into arrayAge
 Put 0 into arrayMark1
 Put 0 into arrayMark2
 Put 0 into arrayTotal
 Put “” into arrayDecision
 Put 4 into Number_Of_Students
 Put 0 into Check_Mark
 Put 0 into Check_Age
End Setup_Arrays_And_Variables

On Get_Details
 // Setup the number of students - this will determine how many times the loop repeats
 // Start a fixed loop and ask for the students name, age, and first and second mark
 REPEAT with loop = 1 to Number_Of_Students
 Ask "Please enter the name of student number " & loop
 Put it into arrayName[loop]
 //
 Ask "Please enter the age of " & arrayName[loop]
 Put it into Check_Age
 //
 // Check that the age entered is between 12 and 17 and is a whole number (integer).
 // If the age entered is not in this range or a whole number, the user is asked to re-enter.
 REPEAT until Check_Age >= 12 and Check_Age <= 17 and Check_Age is an integer
 Ask "You have entered an invalid age. Please re-enter an age between 12 and 17"
 // If the cancel button is pressed, go back to the start of the program.
 IF the result = "Cancel" THEN exit to top
 Put it into Check_Age
 END REPEAT
 Put Check_Age into arrayAge[loop]
 //
 Ask "Please enter the first mark for" &&arrayName[loop]
 Put it into Check_Mark
 Validate_Mark
 Put Check_Mark into arrayMark1[loop]
 //
 Ask "Please enter the second mark for" &&arrayName[loop]
 Put it into Check_Mark
 Validate_Mark
 Put Check_Mark into arrayMark2[loop]
 Put arrayMark1[loop] + arrayMark2[loop] into arrayTotal[loop]
 END REPEAT
End Get_Details

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 27

 Task 8: Youth Orchestra Program
On Make_Decision
 // Start a fixed loop
 REPEAT with loop = 1 to Number_Of_Students
 // Use a series of conditional IF statements to determine whether or not the student has been
 // accepted into the orchestra
 IF arrayAge[loop] >= 12 AND arrayAge[loop] <= 14 AND arrayTotal[loop] > 70 THEN put "Accepted
 to Junior Orchestra" into arrayDecision[loop] // On the same line
 IF arrayAge[loop] >= 15 AND arrayAge[loop] <= 17 AND arrayTotal[loop] > 70 THEN put "Accepted
 to Senior Orchestra" into arrayDecision[loop] // On the same line
 IF arrayTotal[loop] <= 70 THEN put "Declined to Orchestra" into arrayDecision[loop]
 END REPEAT
End Make_Decision

On Display_Data
 // Display the column headings
 Put "Name" & tab & "Age" & tab & "First Mark" & tab & "Second Mark" & tab & "Total Mark" & tab &
 "Decision" into line 1 of field "Output" // On the same line

 // Start a fixed loop which will display all of the data contained within the arrays
 REPEAT with loop = 1 to Number_Of_Students
 Put arrayName[loop] & tab & arrayAge[loop] & tab & arrayMark1[loop] & tab & arrayMark2[loop] & tab
 & arrayTotal[loop] & tab & arrayDecision[loop] into line loop+3 of field "Output" // On the same line
 END REPEAT
End Display_Data

On Validate_Mark
 // Check that the marks entered are between 0 and 50 and are whole numbers (integers).
 // If the marks entered are not in this range or not whole numbers, the user is asked to re-enter.
 REPEAT until Check_Mark >= 0 and Check_Mark <= 50 and Check_Mark is an integer
 Ask "You have entered an invalid mark. Please re-enter an mark between 0 and 50"
 IF the result = "Cancel" THEN exit to top
 Put it into Check_Mark
 END REPEAT
End Validate_Mark

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 28

 Task 8: Youth Orchestra Program

Testing

Test that you program produces the correct results by keying in the following test data in the screenshot
below.

Note.! When testing your program, be sure to check that the valid mark and age functions are
! working correctly. Remember:

• All ages that are keyed in must be between 12 and 17.
• All marks that are keyed in must be between 0 and 50.
• A student should be accepted to the junior orchestra if the age is between 12 and 14 and

their total mark is over (>) 70.
• A student should be accepted to the senior orchestra if the age is between 15 and 17 and

their total mark is over (>) 70.
• A student should be declined entry to the orchestra if their total mark is less than or equal to

(<=) 70.

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 29

 Task 9: Go Ape!
Specification

GoApe is wanting to create an program that would
calculate the cost for a group to visit their high ropes
assault courses

This program will have a choice of 4 different activities:

• Baboon Tree Top Adventure - £24 per person
• Gorillas Tree Top Adventure - £32 per person
• Forest Segway - £30 per person
• Tree Top Junior - £16 per person

The Program will let the user select how many people will be participating in each activity. It
will also ask them for one contact name and date of arrival and will then calculate the total cost
and add on VAT (20% extra).

Design: Pseudocode for “Calculate Price” Button

Stepwise Design (the main steps of the program)
1.! Setup Variables
2.! Collect Info

Stepwise Refinement (the main steps further refined into smaller steps)
1.! Setup Array and Variables
1.1! SET YourName TO String “”
1.2! SET YourDateOfArrival TO String “”
1.3! SET TotalCost TO Real 0.00
1.4! SET VAT TO Real 0.00

2.! Collect Information and Display
2.1! IF arrayOfActivities is empty THEN
2.2! SEND “No activities selected” TO DISPLAY
2.3! ELSE
2.4! RECEIVE YourName FROM (String) KEYBOARD
2.5! RECEIVE YourDateOfArrival FROM (String) KEYBOARD
2.6! SEND “Thank you for your enquiry ” & YourName TO DISPLAY
2.7! SEND “Arrival date: ” &YourDateOfArrival TO DISPLAY
2.8! SET TotalCost TO 24 * arrayOfActivities[1] + 32 * arrayOfActivities[2] + 30 *
 arrayOfActivities[3] + 16* arrayOfActivities[4]
2.9! SET VAT TO 0.2 * TotalCost
2.10! SET Number Format TO “0.00”
2.11! SEND TotalCost + VAT TO DISPLAY
2.12! END IF

HAGGIS Design
Language

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 30

 Task 9: Go Ape!
Implementation

Once you have read the design above, open the “Go Ape”
stack. It can be found in:

N5 LiveCode Programming > 9_Go Ape.livecode

The main card requires this code so that when the
programs starts it initialises the array and sets all the drop
down menus to “Select”

This code can be entered by pressing Object option and then Card Inspector.

Then press the Code icon.

Enter the following code into the script window.

Global arrayOfActivities

On OpenCard
 Setup_Card
End OpenCard

On Setup_Card
 Put empty into field "Output"
 Put empty into arrayOfActivities

 Set the label of button "BaboonOption" to "Select"
 Set the label of button "GorillaOption" to "Select"
 Set the label of button "BaboonSegway" to "Select"
 Set the label of button "JuniorOption" to "Select"
End Setup_Card

Implementation (continued)

Each drop down menu button requires code like this to
acquire the number of people doing each activity.

The code will be slightly different for each menu though!

Global arrayOfActivities

// This section of code transfers the information from the drop
// down menu button into the array

On menuPick ItemPicked

// When you select a number from the drop down menu this is
// transferred into ItemPicked so if you picked 4 people the
// ItemPicked would become 4

 Answer "You selected "& ItemPicked &" people to do Tree Top Adventure Baboon"

 // Store this number into the array
 Put ItemPicked into arrayOfActivities[1]

End menuPick

Drop Down Menus

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 31

 Task 9: Go Ape!
Implementation (continued)

This is the code that will go into the “Calculate Price” button.
Your teacher will go over this with you, make sure you understand it.

Global arrayOfActivities, YourName, YourDateOfArrival, TotalCost, VAT

On mouseUp
 Setup_Variables
 Collect_Info
End mouseUp

On Setup_Variables

 // Setup the variables to be used in this event
 Put "" into YourName
 Put "" into YourDateOfArrival
 Put 0.00 into TotalCost
 Put 0.00 into VAT

End Setup_Variables

On Collect_Info

 // Check it see if any information has been put into the array
 IF arrayOfActivities is empty THEN
 Answer "Please select some activities before you select the Calculate Price button"
 ELSE
 Ask "Please enter you name: "
 Put it into YourName

 Ask "Please enter date of arrival: "
 Put it into YourDateOfArrival

 Put "Thank you for your enquiry " & YourName into line 1 of field "Output"
 Put "Arrival date: " &YourDateOfArrival into line 2 of field "Output"

 // Each element from arrayOfActivites is multiplied by the price for that activity
 Put 24 * arrayOfActivities[1] + 32 * arrayOfActivities[2]+ 30 * arrayOfActivities[3]+16 *
 arrayOfActivities[4] into TotalCost // On the same line

 // Calculate 20% of the total bill in order to work out the VAT cost
 Put 0.2 * TotalCost into VAT

 Set numberformat to "0.00"
 Put "Cost: £" & TotalCost into line 3 of field "Output"
 Put "VAT: £" & VAT into line 4 of field "Output"
 Put "Total cost: £" & TotalCost + VAT into line 5 of field "Output"
 END IF

End Collect_Info

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 32

 Task 9: Go Ape!

Testing

You should now test that your program works correctly. Run your program twice with the data in the test
table below. Ensure that the Cost, VAT and Overall Cost are calculated correctly.

Activities
on Offer

Cost Per
Activity

(£)

Number Of
Participants In
Each Activity

Calculated Total
Pay

Programs Total
Pay

Program Run 1:
Customer Name: Mr Steven Whyte
Program Run 1:
Customer Name: Mr Steven Whyte
Program Run 1:
Customer Name: Mr Steven Whyte Date of Arrival: 10th September 2014Date of Arrival: 10th September 2014

1. Tree Top
! Adventure
! Baboon

2.!Tree Top
! Adventure
! Gorillas

3.!Forrest
! Segway

4.!Tree Top
! Junior

£24.00

£32.00

30.00

£16.00

6

5

8

6

Cost:
£640.00

VAT:
£128.00

Overall Cost:
£768.00

Cost:
£640.00

VAT:
£128.00

Overall Cost:
£768.00

Program Run 2:
Customer Name: Miss Emily Smyth
Program Run 2:
Customer Name: Miss Emily Smyth
Program Run 2:
Customer Name: Miss Emily Smyth Date of Arrival: 21st May 2014Date of Arrival: 21st May 2014

1. Tree Top
! Adventure
! Baboon

2.!Tree Top
! Adventure
! Gorillas

3.!Forrest
! Segway

4.!Tree Top
! Junior

£24.00

£32.00

30.00

£16.00

9

9

9

9

Cost:
£918.00

VAT:
£183.60

Overall Cost:
£1101.60

Cost:
£918.00

VAT:
£183.60

Overall Cost:
£1101.60

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 33

 Task 10: Car Dealer
Specification

A car dealer requires a program in order to advertise
and sell his top five vehicles each week.

The program should take in the cost of the five cars
and then allow the user to display the average of all the
car prices entered.

It should also allow the user to work out the average
of a range of cars entered and not just all of them.

For example, the car dealer should be able to use the program to work out and display the
average of cars 1, 3 and 5 if need be.

Design: Pseudocode for “Enter Prices” Button

Stepwise Design (the main steps of the program)
1.! Setup Variables And Array
2.! Get Prices
3.! Validate Price

Stepwise Refinement (the main steps further refined into smaller steps)
1.! Setup Variables And Array
1.1! SET CarValue TO Real 0.00
1.2! SET arrayCarPrices TO Real 0.00
1.3! SET NumberOfCars TO Integer 5

2.! Get Prices
2.1! REPEAT with loop = 1 to NumberOfCars
2.2! RECEIVE CarValue FROM (real) KEYBOARD
2.3! CALL Validate_Price Function
2.4! SET CarValue TO arrayCarPrices[loop]
2.5! SEND “Car Output “ & loop TO Field_Name
2.6! SEND “£” & arrayCarPrices[loop] into line 3 of field Field_Name
2.7! END REPEAT

3.! Validate Price
3.1! REPEAT until CarValue > 0
3.2! RECEIVE CarValue FROM (real) KEYBOARD
3.3! END REPEAT

HAGGIS Design
Language

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 34

 Task 10: Car Dealer
Implementation

Once you have read the design above, open the “Car Dealer”
stack. It can be found in:

N5 LiveCode Programming > 10_Car Dealer.livecode

The main card requires this code so that when the program
starts it empties (clears) line 3 of each of the prices in each of
the car Output fields.

This code can be entered by pressing Object option and then Card Inspector.

Then press the Code icon.

Enter the following code into the script window.

Global NumberOfCars, arrayCarPrices

On OpenCard
 Setup_Card
End OpenCard

On Setup_Card
 // Set up the variable and array to be used in this event
 Put 5 into NumberOfCars
 Put 0 into arrayCarPrices

 // Clear line 3 from each of the 5 Car Output fields
 REPEAT with loop = 1 to NumberOfCars
 Put "Car Output " & loop into Field_Name
 Put empty into line 3 of field Field_Name
 END REPEAT

 // Clear the Average Output field
 Put empty into field "Average Output"
End Setup_Card

Global arrayCarPrices, NumberOfCars, CarValue

On mouseUp
 Setup_Variables_And_Array
 Get_Prices
End mouseUp

On Setup_Variables_And_Array
 // Select the variables and array to be used in this event
 Put 0 into CarValue
 Put 0 into arrayCarPrices
 Put 5 into NumberOfCars
End Setup_Variables_And_Array

Implementation (continued)

The following code should now be entered into the “Enter Prices” button.

The code is continued on the next page

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 35

 Task 10: Car Dealer

On Get_Prices
 // Start a Repeat until loop in order to get the cost of each of the cars
 REPEAT with loop = 1 to NumberOfCars
 Ask "Enter the value of Car "&loop&" to the nearest pound (don't put in the £ sign)"
 IF the result = "Cancel" THEN exit to top
 Put it into CarValue

 // Begin the Validate_Price function
 Validate_Price

 // Put each price entered into each of the five elements of the arrayCarPrices
 Put CarValue into arrayCarPrices[loop]

 // Put the price into line 3 of each of the Car Output fields
 Put "Car Output " & loop into Field_Name
 Put "£" & arrayCarPrices[loop] into line 3 of field Field_Name
 END REPEAT
End Get_Prices

On Validate_Price
 // Each price must be greater than £0.00. The validation function will check this
 REPEAT until CarValue > 0
 Ask "Car value must be greater than £0.00"
 IF the result = "Cancel" THEN exit to top
 Put it into CarValue
 END REPEAT
End Validate_Price

Implementation (continued)

The following code should now be entered into the “Average Price” button.

Global arrayCarPrices, NumberOfCars, TotalCarValue, AverageCarValue

On mouseUp
 // This boolean statement checks to see that car prices have been entered
 IF arrayCarPrices = 0 THEN
 Answer "Please enter car prices before selecting the Average Price Button"
 ELSE
 Setup_Variables
 Display_Average
 END IF
End mouseUp

On Setup_Variables
 // Setup the variables to be used in this event
 Put 0.00 into TotalCarValue
 Put 0.00 into AverageCarValue
End Setup_Variables

The code is continued on the next page

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 36

 Task 10: Car Dealer

Implementation (continued)

The following code should now be entered into the “Selected Average” button.

Global arrayCarPrices, CarPricesEntered, RunningTotal, NoMoreCars, NumberOfCarsEntered,
carNumber // On the same line

On mouseUp
 // This boolean statement checks to see that car prices have been entered
 IF arrayCarPrices = 0 THEN
 Answer "Please enter the car prices before selecting the Selected Average Button"
 ELSE
 Setup_Variables
 Select_Range
 END IF
End mouseUp

On Setup_Variables
 // Setup the variables to be used in this event
 Put 0 into carNumber
 Put "" into NoMoreCars
 Put 0.00 into RunningTotal
 Put 0 into NumberOfCarsEntered
End Setup_Variables

On Select_Range
 // Allow the user to choose the cars that they want to find the average for.
 REPEAT until NoMoreCars = "N"
 Ask "Enter the cars that you want to work out the average for, enter N when finished: "
 IF the result = "Cancel" THEN exit to top
 Put it into carNumber

 // Every time user user chooses a car, one is added to the NumberOfCarsEntered
 IF carNumber <> "N" THEN
 Add 1 to NumberOfCarsEntered

On Display_Average

 // Put each of the car prices into a variable to hold the TotalCarValue of all the cars
 REPEAT with loop = 1 to NumberOfCars
 Put arrayCarPrices[loop] + TotalCarValue into TotalCarValue
 END REPEAT

 // Work out the average by dividing the TotalCarValue by the NumberOfCars and
 // round the answer. Place the answer into the variable AverageCarValue
 Put round(TotalCarValue / NumberOfCars) into AverageCarValue

 // Set the Output to pounds and pence
 // Display the AverageCarValue
 Set numberformat to "0.00"
 Put "The average value of all the cars is: £" & AverageCarValue into field "Average Output"
End Display_Average

The code is continued on the next page

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 37

 Task 10: Car Dealer

 // Check to see that a valid car number between 1 and 5 has been entered
 REPEAT until carNumber >= 1 AND carNumber <= 5 AND carNumber is an integer
 Ask "You have to select a car between 1 and 5"
 IF the result = "Cancel" THEN exit to top
 put it into carNumber
 END REPEAT
 Put arrayCarPrices[carNumber]+RunningTotal into RunningTotal
 ELSE
 // If the "No" is entered, come out of the Repeat until loop
 Put it into NoMoreCars
 END IF
 END REPEAT

 // Set the Output to pounds and pence
 // Calculate the selected average by dividing the RunningTotal by the
 // NumberOfCarsEntered by the user
 // Display the result in the Average Output field
 Set numberformat to "0.00"
 Put "The average cost for the cars you selected is £"&RunningTotal/NumberOfCarsEntered
 into field "Average Output" // On the same line
End Select_Range

Testing

You should now test that your program works correctly using the test data supplied on the next page.

National 5 Computing Science ! Programming with LiveCode (Community Edition)

Gracemount High School! Page 38

 Task 10: Car Dealer

Testing

You should now test that your program works correctly. Run your program twice with the data in the test
table below. Ensure that the Average and Selective Average on the range of cars shown are used, and
are calculated correctly.

Cars For
Sale

Cost Per
Car
(£)

Calculated
Average

Programs
Average

Calculated
Selective
Average

Programs
Selective
Average

Program Run:Program Run:Program Run:Program Run:Program Run:Program Run:

1. Ford
! KA

2.!Kia
! Sportage

3.!Subaru
! Legacy

4.!Honda
! Jazz

5.!Fiat
! Grande
! Punto

£7500

£4300

£5000

£9600

£4800

£6,240.00 £6,240.00

Cars
Entered:
1, 3 and 5

£5766.67

Cars
Entered:
1, 3 and 5

£5766.67

You are now ready to do the End of Unit Outcome Assessments for Software
Design and Development Topic.

Good luck!

